
How to Ask For Permission

Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta Akhawe, David Wagner
{apf, egelman, finifter, devdatta, daw}@cs.berkeley.edu

University of California, Berkeley

Abstract
Application platforms provide applications with access
to hardware (e.g., GPS and cameras) and personal data.
Modern platforms use permission systems to protect ac-
cess to these resources. The nature of these permission
systems vary widely across platforms. Some platforms
obtain user consent as part of installation, while others
display runtime consent dialogs. We propose a set of
guidelines to aid platform designers in determining the
most appropriate permission-granting mechanism for a
given permission. We apply our proposal to a smart-
phone platform. A preliminary evaluation indicates that
our model will reduce the number of warnings presented
to users, thereby reducing habituation effects.

1 Introduction

In traditional platforms, applications inherit all of the
privileges of the users who execute them. In modern
platforms, applications run with few privileges by de-
fault and can only obtain additional privileges via the
platform’s permission system. For example, an An-
droid application can gain access to the user’s geoloca-
tion with the ACCESS FINE LOCATION permission. We
see permission systems in smartphones (e.g., Android,
iOS, Windows Phone), browsers (e.g., Chrome exten-
sions and web apps), web platforms (e.g., the Facebook
Platform and the Twitter API), and desktop operating
systems (e.g., Mac App Store and Windows 8 Metro).

Typically, platforms with permission systems involve
the user in the permission-granting process in order to
(1) inform the user about potential risks and (2) engage
the user in security and privacy decisions. The quality
of the user’s experience with permissions is fundamen-
tal to successfully informing and empowering users. A
platform designer has to consider diverse aspects of the
user experience when creating the permission-granting
process. When should the platform ask the user for con-
sent? What types of permissions need consent? How
much user interaction is too much? We aim to answer
these questions by discussing the strengths and weak-
nesses of the different permission-granting mechanisms
that are available to platform designers.

Currently, there is no consensus on the best way to
design a permission system. This is evidenced by the
wide disparity in the user experience for two popu-
lar smartphone platforms: Android and iOS. Android
presents 124 permissions to users with install-time warn-
ings, whereas iOS obtains user consent for two permis-
sions with runtime confirmation dialogs. A number of
research proposals argue for the use of trusted UI in per-
mission systems [8, 9, 12, 15], but these have seen mini-
mal adoption in the real world because they do not scale
to an entire permission system.

We advocate for a new approach to permission
systems: choosing the most appropriate permission-
granting mechanism independently for each permission.
Our approach takes the unique requirements and con-
straints of each permission into account. This is a depar-
ture from existing platforms, which have applied a sin-
gle permission-granting mechanism to all permissions.
We provide a set of guidelines for selecting from among
permission-granting mechanisms.

Contributions. We contribute the following:

• We enumerate the permission-granting mechanisms
available to platform designers and discuss their
strengths and weaknesses. We take into account a
set of usability principles from past literature and
rank the permission-granting mechanisms accord-
ing to the quality of their user experiences.

• We develop a preliminary decision procedure for
choosing the most appropriate permission-granting
mechanism for each permission.

• We apply our decision procedure to a set of smart-
phone application permissions. We find that the
permission-granting mechanisms that afford the
best user experiences can be applied to a majority
of the permissions.

Our work is primarily targeted at the designer of a new
permission system for a platform that does not have an
application review process. A platform with an appli-
cation review process might also make use of our rec-
ommendations when it is not possible or appropriate to
review a permission; that decision is beyond our scope.



No No No

Automatic 
grant Trusted UI Confirmation

dialog
Install-time 

warning

Yes

No

Yes YesYes YesNo

Revertibility
Can the action be 

undone with 
minimal effort?

Severity
If abused, is it 

just an 
annoyance?

Initiation
Did the user 
initiate the 
request?

Alterable
Can the action 
be altered by

 the user?

Approval
Does it need to 

work without 
immediate user 

approval?

Figure 1: A guide to selecting between the different permission-granting mechanisms.

2 Guiding Principles

Permission-granting UI elements usually involve closed-
form questions: the user is given a choice between grant-
ing or denying the permission. Krosnick and Alwin’s
dual path model [1, 10] is a standard model used to un-
derstand human behavior when faced with closed-form
questions. According to this model, humans rely upon
two distinct strategies. A user who is optimizing reads
and interprets the question, retrieves relevant informa-
tion from long-term memory, and makes a decision based
on her disposition and beliefs. In contrast, a user who
is satisficing does not fully understand the question, re-
trieves only salient cues from short-term memory, and
relies on simple heuristics to make a decision. Based on
this model, we discuss two principles guiding our design.

2.1 Conserve User Attention

Human attention is a shared, finite resource [1]. Its use
should be infrequent, and uncontrolled use can lead to a
“tragedy of the commons” scenario. Repetition causes
habituation: once a user clicks through the same warn-
ing often enough, he or she will switch from reading the
warning before clicking on it to quickly clicking through
it without reading (i.e., satisficing). The link between
repetition and satisficing has been observed for Win-
dows UAC dialogs, Android install-time warnings, and
browser security warnings [3, 6, 11, 13]. Users pay less
attention to each subsequent warning, and this effect car-
ries over to other, similar warnings [2].

Principle 1: Conserve user attention, utilizing it only for
permissions that have severe consequences.

2.2 Avoid Interruptions

Users generally do not set out to complete security-
related tasks. Instead, they encounter security informa-
tion when they are trying to check their e-mail, surf the
web, or perform some other typical task. Security di-
alogs often interrupt these primary tasks; for example,
Android install-time warnings stand between a user and
her primary goal of installing the application.

Users have low motivation to consider interruptive se-
curity mechanisms, which encourages satisficing. Con-
cretely, this means that the user will click through a dia-
log box that interrupts her main task without fully under-
standing the consequences. Good et al. found that users
dismiss or ignore interruptive warnings [7]. In a study of
Windows UAC consent dialogs, Motiee et al. observed
that most study participants clicked through illegitimate
UAC prompts while completing tasks [11].

Principle 2: When possible, avoid interrupting the user’s
primary task with explicit security decisions.

3 Permission-Granting Mechanisms

Permission systems can grant permissions to applica-
tions using four basic mechanisms: automatic grant-
ing, trusted UI, runtime consent dialogs, and install-time
warnings. We discuss these permission-granting mech-
anisms in order of preference, based on the amount of
user attention that they consume. Figure 1 summarizes
our proposed selection criteria.

3.1 Automatic Grant

Definition. An automatically-granted permission must
be requested by the developer, but it is granted without
user involvement. We propose that permissions should
be automatically granted if they protect easily-revertible
or low-severity permissions. For example, changes to
the global audio settings are easily revertible, and vibrat-
ing the phone is merely annoying. Currently, any web
site can play audio or generate pop-up alerts without re-
questing permission from the user; although this can lead
to annoyance, the web is still usable. Web users simply
exit web sites that have unwanted music or alerts.

Automatically granted permissions should also in-
clude auditing mechanisms to help users identify the
source of an annoyance. Auditing can take many forms,
such as notifications that attribute actions to applica-
tions or “undo” options. These auditing mechanisms al-
low users to identify and uninstall abusive applications.
Figure 2 provides examples of auditing mechanisms for
automatically-granted permissions.



(a) The user can see which
application last changed
the wallpaper and revert.

(b) The user can see which
application last set the time.

Figure 2: Examples of auditing for automatic grants.

Pros. Automatic grants do not require user attention,
while still empowering the user to undo the action or
uninstall abusive applications.

Cons. Automatically-granted permissions could lead to
severe user frustration if a large number of applications
were to abuse them. Some permissions may be more
attractive as targets for abuse than others. If there is
widespread motivation to abuse a permission, then au-
tomatic granting may not be appropriate for the permis-
sion. The platform can provide deterrents to prevent mis-
use. For example, developers on platforms with cen-
tralized markets are unlikely to abuse permissions in the
presence of an auditing mechanism because they do not
want users to write negative reviews.

Selection Criteria. A permission should be automat-
ically granted if it is easily revertible or low severity.
Severity should be determined by surveying users.

3.2 Trusted UI

Definition. Trusted UI elements appear as part of an ap-
plication’s workflow, but clicking on them imbues the
application with a new permission. To ensure that ap-
plications cannot trick users, trusted UI elements can be
controlled only by the platform. Trusted UI has been in-
carnated in many forms, including CapDesk [14], access
control gadgets [12], and sensor-access widgets [8]. Ex-
amples of trusted UI elements include the following:

• Choosers let users select a subset of photos, con-
tacts, songs, etc. Choosers can be adapted to
serve as permission-granting mechanisms. Figure 3
shows an example photo chooser as trusted UI. Web

(a) The application wants
to read the user’s photos,
so it opens this chooser.

(b) After clicking on the
right arrow, the user se-
lects two albums.

Figure 3: A photo chooser.

browsers and Windows 8 Metro currently rely on
choosers for providing file access.
• Review screens allow users to review, accept, or

modify proposed changes. For example, before
adding events to a calendar, a review screen allows
the user to see and optionally edit the events (Fig-
ure 4(a)). iOS relies on review screens for text mes-
saging: after an application composes a message
and selects a recipient, the OS shows the user an
editable preview of the text message. The message
is sent only after the user clicks the send button.
• Embedded buttons allow a user to grant permissions

as part of the natural flow. For example, a user
who is sending an SMS message from a third-party
application will ultimately need to press a button;
using trusted UI means the platform provides the
button (Figure 4(b)). In a trusted UI design, the
applications embed placeholder elements, and the
platform renders the button over the placeholder at
runtime, optionally incorporating parameters such
as the recipient of a phone call or SMS.

Strengths. Trusted UI elements are non-interruptive be-
cause they are part of the user’s primary task, which
means users are motivated to interact with them. Roesner
et al. showed that interactions with trusted UI matched
users’ expectations about privacy and security [12]. Mo-
tivation and positive expectations lead to optimizing.

Weaknesses. Not all permissions can be granted through
trusted UI elements. In particular, actions that are not
user initiated cannot be represented with trusted UI. For
example, a security application may prompt the user
when it detects malware. Trusted UI can’t accommodate



(a) An item review screen
for writing to the calendar.

(b) A permission-granting
button for sending SMS.

Figure 4: Item review screen and permission-granting button.

this use case because the application performs the action
in response to external state, rather than the user.1

Trusted UI elements require effort to design because
they need to fit applications’ workflows and accommo-
date as much functionality as possible. They also con-
strain the appearance of applications, so their design
needs to be neutral enough to fit most applications. To
help trusted UI blend into applications, the platform
could allow some degree of customization or allow de-
velopers to choose between multiple designs. For ex-
ample, developers could choose the size, placement, or
color scheme of an element. Ideally, their design would
involve input from application developers.

Selection Criteria. A permission should be granted with
trusted UI if its use is typically user initiated or the ac-
tion can be altered by the user (e.g., selecting a subset of
photos instead of all photos, or modifying the calendar
events that the application is adding).

3.3 Runtime Consent Dialogs

Definition. Runtime consent dialogs interrupt the user’s
flow by prompting them to allow or deny a permission.
Runtime consent dialogs sometimes contain descriptions
of the risk or an option to remember the decision. Win-
dows UAC prompts and the iOS location and notification
dialogs are examples of runtime consent dialogs. A plat-
form can use a standardized consent dialog for all rele-
vant permissions (e.g., Figure 5(a)), or it can include cus-
tomized dialogs for different actions (e.g., Figure 5(b)).

1Roesner et al. proposed embedded buttons with text such as “per-
manent access” [12]. We do not view these as trusted UI because they
are not part of the normal workflow of an application.

(a) iOS’s location or noti-
fications dialog.

(b) A dialog that is specific
to Bluetooth pairing.

Figure 5: Runtime consent dialogs.

Strengths. Runtime consent dialogs can be applied to
nearly all permissions by changing the text of a standard-
ized consent dialog or creating new customized dialogs.

Weaknesses. Runtime consent dialogs encourage satis-
ficing because they are interruptive and repetitive.

From an application functionality standpoint, runtime
consent dialogs are not well suited to actions that need
to be performed without the user’s immediate consent.
For example, a security application might delete all of a
user’s text messages if the phone is stolen; in this sce-
nario, immediate user approval is not possible because
the user does not have physical control of the phone at
the time the action needs to occur.

Selection Criteria. Runtime consent dialogs should be
used for permissions that cannot be automatically
granted or represented with trusted UI. Runtime consent
dialogs should not be used if the permission needs to be
used in the future without immediate user consent.

3.4 Install-Time Warnings

Definition. Install-time permission warnings integrate
permission granting into the installation flow. Installa-
tion screens list the application’s requested permissions.
In some platforms (e.g., Facebook), the user can reject
some install-time permissions. In other platforms (e.g.,
Android and Windows 8 Metro), the user must approve
all requested permissions or abort installation.

Strengths. Install-time warnings can be applied to any
type of permission. Unlike runtime consent dialogs,
install-time warnings support situations in which an ap-
plication needs advance approval of a restricted action.
They are also easy to implement.



Weaknesses. Install-time warnings are interruptive be-
cause they hinder the user’s primary goal of installa-
tion. They are also repetitive: users see nearly-identical
install-time warnings every time they install an Android
application, which results in satisficing [6]. Compound-
ing their monotony, install-time warnings also suffer
from being similar to EULAs. Users typically ignore
EULAs [7], and their habituation to EULAs extends to
other types of indicators that resemble EULAs [2]. This
implies that install-time warnings may not adequately
capture users’ attention.

Users may incorrectly believe that an application can-
not use a permission granted during installation until the
user confirms this a second time during runtime [12, 6].

Selection Criteria. Use install-time warnings only if no
other permission-granting mechanism is appropriate.

3.5 Multiple Mechanisms

A platform designer might be tempted to provide mul-
tiple mechanisms for the same permission. For ex-
ample, Android developers have two options for send-
ing SMS messages: (1) they can use trusted UI, or (2)
they can forgo trusted UI by using a permission with
an install-time warning. In practice, developers often
choose the latter for reasons other than functionality [5,
Section 4.1.5]. Developers might prefer to design their
own UI or be unaware of trusted UI. When develop-
ers choose to use an install-time warning or runtime
consent prompt instead of trusted UI, the platform de-
signer’s intention of conserving user attention is not re-
alized. In general, developers’ decisions to use a sub-
optimal permission-granting mechanism will negatively
impact the overall platform.

Platform designers should not enable multiple mecha-
nisms for the same permission without carefully consid-
ering developer incentives. Without proper incentives,
developers may select the mechanism that is less favor-
able from the user’s and/or platform designer’s perspec-
tive, negating any benefits of the alternative mechanism.

Selection Criteria. Multiple mechanisms should be
avoided. When they are unavoidable, the platform should
disincentivize the use of the less-preferable mechanism.

4 Applying Our Guidelines

We systematically assigned permission-granting mech-
anisms to smartphone permissions, according to our
guidelines. We then reviewed 20 iPhone applications to
evaluate how the user experience would change in our
proposed permission granting system.

4.1 Permission Assignment
To perform the assignment, we first created a set of
platform-neutral smartphone permissions by combining
Android permissions, Windows Phone 7 capabilities,
iOS prompts, and the Mozilla WebAPI. After grouping
redundant permissions and dividing broad permissions,2

we arrived at 83 platform-neutral permissions. We then
considered each permission individually. We devised au-
diting and trusted UI mechanisms as appropriate; Fig-
ures 2, 3, and 4 illustrate some of our proposed mecha-
nisms. As part of our analysis, we surveyed 3,115 smart-
phone users to identify low-severity permissions [4].

Based on our analysis, 55% of permissions can be au-
tomatically granted, 23% can be represented with trusted
UI, 16% require runtime consent dialogs, and 6% would
need install-time warnings. We find that runtime con-
sent dialogs and install-time warnings cannot be com-
pletely avoided, given that we do not wish to disable
application features. However, our assignment demon-
strates that the majority of permissions can be handled
with non-interruptive permission-granting mechanisms.

Assigning mechanisms to permissions without com-
promising application functionality can be complex. In
some cases, it may require changes to APIs. For exam-
ple, we decided to use an embedded button to control
the still camera permission. After examining applica-
tions that take photos, we found that past proposals for
controlling camera access with trusted UI [12, 8] would
not satisfy many popular applications:

1. Trusted preview screens cannot be used for applica-
tions that omit or partially cover the camera preview
as part of their design (e.g., augmented reality).

2. Embedded buttons may not work for applications
that capture future photos. For example, a bicycling
application may automatically take photos at regu-
lar distance intervals during a ride. In our design,
applications have to use the trusted video button in-
stead; a video recording notification will then flash
until the photography is complete.

3. An embedded button is not sufficient when applica-
tions apply realtime filters, e.g., to preview a sepia
photo. These applications access video data before
the user presses a button. This can be handled by
creating an optional trusted preview screen that ren-
ders effects on behalf of applications.

Similarly, other permissions might also require
changes to APIs to support diverse use cases. For exam-
ple, having separate API calls for Bluetooth, WiFi, and
other settings instead of a single settings API allows each
one to have its own permission-granting mechanism.

2For example, we grouped Android’s “automatically start at boot”
and “make application always run” permissions into “run all the time.”



4.2 Preliminary Evaluation

We reviewed the twenty most popular free iPhone appli-
cations to evaluate how our proposed permission system
would impact the user experience. We manually tested
the applications to match their behavior to the 83 API
calls discussed in Section 4.

iOS is the only smartphone platform that currently
uses runtime consent dialogs, and our evaluation shows
that our proposal would not degrade the iOS user experi-
ence. A user would see an average of 0.25 runtime con-
sent dialogs per application (min= 0,max= 1) under our
proposed permission system. All of these runtime con-
sent dialogs already exist in iOS. Our proposal would
actually decrease the number of runtime consent dialogs
because we automatically grant access to the notification
API instead of prompting users as iOS does.

We also find that most applications would not require
changes to use trusted UI elements because they already
use them (e.g., photo choosers). The average application
would contain 0.60 trusted UI elements (min = 0,max =
3). Three similar applications would need changes:
they would have to replace their camera buttons with
the trusted camera button, replace their custom contacts
choosers with the trusted contacts chooser, and give their
preview filters to a trusted preview window.

These results suggest that our approach could plausi-
bly provide a workable basis for asking for permission,
without triggering habituation.

5 Conclusion

Current third-party application platforms do not consider
risk or usability when determining which mechanism to
use when applications request permissions. In fact, most
platforms simply use the same mechanism for all per-
missions. We propose a new model (Figure 1) to help
platform developers choose the most appropriate mecha-
nism for a given permission. While our model seems like
a plausible direction, further research is still needed to
perform a comprehensive usability evaluation of a plat-
form that follows our model.

Acknowledgements

This material is based upon work supported by a Face-
book Fellowship, National Science Foundation Graduate
Research Fellowships, NSF grant CNS-1018924, a gift
from Google, and the Intel Science and Technology Cen-
ter for Secure Computing. Any opinions, findings, con-
clusions, or recommendations expressed here are those
of the authors and do not necessarily reflect the views of
the entities that provided funding.

References
[1] R. Böhme and J. Grossklags. The Security Cost of Cheap User

Interaction. In Proceedings of the New Security Paradigms Work-
shop (NSPW), 2011.

[2] R. Böhme and S. Köpsell. Trained to accept? A field experiment
on consent dialogs. In Proceedings of the ACm Conference on
Human Factors in Computing Systems (CHI), 2010.

[3] S. Egelman, L. F. Cranor, and J. Hong. You’ve been warned:
An empirical study of the effectiveness of web browser phishing
warnings. In Proceedings of The 26th SIGCHI Conference on
Human Factors in Computing Systems (CHI), 2008.

[4] A. P. Felt, S. Egelman, and D. Wagner. I’ve Got 99 Problems, But
Vibration Ain’t One: A Survey of Smartphone Users’ Concerns.
Technical Report UCB/EECS-2012-70, May 2012.

[5] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A
survey of mobile malware in the wild. In Proceedings of the ACM
Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM), 2011.

[6] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wag-
ner. Android permissions: User attention, comprehension, and
behavior. In Proceedings of the Symposium on Usable Privacy
and Security (SOUPS), 2012.

[7] N. Good, R. Dhamija, J. Grossklags, S. Aronovitz, D. Thaw,
D. Mulligan, and J. Konstan. Stopping spyware at the gate: A
user study of privacy, notice and spyware. In Proceedings of the
Symposium On Usable Privacy and Security (SOUPS), 2005.

[8] J. Howell and S. Schechter. What you see is what they get: Pro-
tecting users from unwanted use of microphones, cameras, and
other sensors. In Proceedings of the Web 2.0 Security & Privacy
Workshop (W2SP), 2010.

[9] Ka-Ping Yee. Secure Interaction Design and The Principle of
Least Authority. In Proceedings of the CHI Workshop on Human-
Computer Interaction and Security Systems, 2003.

[10] J. Krosnick and D. Alwin. An evaluation of a cognitive theory
of response-order effects in survey measurement. Public Opinion
Quarterly, 51(2):201–219, Summer 1987.

[11] S. Motiee, K. Hawkey, and K. Beznosov. Do Windows Users Fol-
low the Principle of Least Privilege? Investigating User Account
Control Practices. In Proceedings of the Symposium on Usable
Privacy and Security (SOUPS), 2010.

[12] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan. User-driven access control: Rethinking permission
granting in modern operating systems. In Proceedings of the
IEEE Symposium on Security and Privacy, 2012.

[13] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cra-
nor. Crying Wolf: An Empirical Study of SSL Warning Effective-
ness. In Proceedings of the USENIX Security Symposium, 2009.

[14] D. Wagner and D. Tribble. A Security Analysis of the Combex
DarpaBrowser Architecture, March 4 2002. http://www.combex.
com/papers/darpa-review/security-review.html.

[15] Z. E. Ye, S. Smith, and D. Anthony. Trusted paths for browsers.
ACM Transactions on Information and System Security (TIS-
SEC), 2005.

http://www.combex.com/papers/darpa-review/security-review.html
http://www.combex.com/papers/darpa-review/security-review.html

	Introduction
	Guiding Principles
	Conserve User Attention
	Avoid Interruptions

	Permission-Granting Mechanisms
	Automatic Grant
	Trusted UI
	Runtime Consent Dialogs
	Install-Time Warnings
	Multiple Mechanisms

	Applying Our Guidelines
	Permission Assignment
	Preliminary Evaluation

	Conclusion

