
When It’s Better to Ask Forgiveness than Get Permission:
Attribution Mechanisms for Smartphone Resources

Christopher Thompson, Maritza Johnson,
Serge Egelman, David Wagner, and Jennifer King

{cthompson, maritzaj, egelman, daw}@cs.berkeley.edu, jenking@ischool.berkeley.edu
University of California, Berkeley

ABSTRACT
Smartphone applications pose interesting security problems
because the same resources they use to enhance the user
experience may also be used in ways that users might find
objectionable. We performed a set of experiments to study
whether attribution mechanisms could help users understand
how smartphone applications access device resources. First,
we performed an online survey and found that, as attribu-
tion mechanisms have become available on the Android plat-
form, users notice and use them. Second, we designed new
attribution mechanisms; a qualitative experiment suggested
that our proposed mechanisms are intuitive to understand.
Finally, we performed a laboratory experiment in which we
simulated application misbehaviors to observe whether users
equipped with our attribution mechanisms were able to iden-
tify the offending applications. Our results show that, for
users who notice application misbehaviors, these attribution
mechanisms are significantly more effective than the status
quo.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces; D.4.6 [Software]: Security and Protection

General Terms
Human Factors, Design, Experimentation, Security

1. INTRODUCTION

It’s easier to ask forgiveness than it is to get permission.
—Grace Hopper

The top four mobile platforms by market share represent
99% of the U.S. market: Android (54%), iOS (34%), Black-
Berry (8%), and Windows Phone (3%) [19]. All of these
platforms enforce permission models where the user is ex-
plicitly prompted before an application is given access to

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2013, July 24–26,
2013, Newcastle, UK.

personal data or hardware features. The goal of these per-
mission models is to give users control over how applications
access their devices and personal information.

Recent research has demonstrated that current permis-
sion models have serious limitations: few users read permis-
sion requests and even fewer understand them [17, 22]. In
Android, the most popular mobile platform, users see an
average of four permission requests each time they install
an application [16]. Some permission requests are so per-
vasive and represent such minimal risks that their presence
detracts from more concerning permission requests, thereby
causing habituation [4]. Other permission requests lack con-
text because they are presented during installation, rather
than when the resource is actually needed by the applica-
tion. For instance, when an application is granted the ability
to collect GPS data, the application has just as much ability
to collect this data when the user is at a shopping mall as
when she is visiting a paramour.

After examining users’ perceptions of smartphone-related
risks [15], Felt et al. suggested that smartphones should not
prompt the user about a permission request when the risks
from that request can either be undone or when they are
only an annoyance [14]. Instead, to minimize habituation,
these permissions should be “implicitly granted.” For this
to be a viable solution, users must be able to attribute the
use of an implicitly-granted permission to a specific appli-
cation. Such a feature would allow the user to evaluate the
appropriateness of the action in context and provide the
user with an avenue for identifying an offending application
so that implicitly-granted permissions may be revoked and
their associated misbehaviors stopped or undone.

We performed a series of experiments on the Android
platform to evaluate two different attribution mechanisms
for implicitly-granted permissions. We examined interac-
tive notification icons that identified the application that
was vibrating the smartphone, as well as annotations to
the Settings application that identified the application that
last changed the wallpaper. Overall, we observed that when
compared to the status quo (i.e., a stock Android device),
once a misbehavior was noticed, significantly more partici-
pants who used devices equipped with our new attribution
mechanisms were able to correctly identify the applications
that caused those misbehaviors. Our contributions are as
follows:

• We show that as few as 17% of smartphone users un-
derstand that background applications may have the
same abilities as foreground applications, thus making
it difficult to identify the source of a misbehavior.

1

• We show that as many as 85% of current Android users
understand how to use the Settings application to at-
tribute application behaviors. We observed that 95%
of our participants understood that the notification
drawer could be expanded to yield more information
about application behaviors.

• We show that when presented with our attribution
mechanisms, significantly more participants correctly
identified the source of a misbehavior.

2. BACKGROUND
The literature on hazard control provides a hierarchy of

procedures for dealing with potential hazards [24]: (1) elim-
inate the hazard; (2) guard against the hazard; otherwise,
(3) warn about the hazard. Thus, warning is a last resort,
whenever a hazard cannot be eliminated or otherwise mit-
igated. With regard to mobile devices (e.g., smartphones
and tablets), hazards occur when applications inappropri-
ately access personal data or hardware resources. Malware
applications do this intentionally for nefarious purposes and
therefore platforms should automatically eliminate or oth-
erwise mitigate these threats.

In mobile security, much work has been done examin-
ing mobile malware [13, 20], malware detection [6, 7, 26],
and privilege escalation [9, 18, 30]. However, recent work
by Lever et al. has shown that, at least in the US, only a
tiny fraction of mobile devices seem to have malware prob-
lems [25]. Instead, a more pervasive threat appears to be
from well-meaning applications that—either intentionally or
unintentionally—access users’ personal data and/or hard-
ware resources in ways that they neither expect nor condone.

Enck et al. showed that there is systematic misuse of
personal and phone identifiers stored on Android smart-
phones [12]. Researchers have developed techniques to de-
tect privacy-violating information flows [11], and to detect
when applications are overprivileged [16]. Because users
may evaluate these risks differently (i.e., whether the func-
tionality offered by a particular application is worth the cost
of giving up personal data), platforms warn against this haz-
ard through the use of permission requests.

When choosing how to represent permission requests, plat-
form developers have essentially four mechanisms at their
disposal: attribution mechanisms for automatically granted
permissions, trusted UI components, runtime warnings, and
install-time warnings [14]. Android uses install-time warn-
ings for all of its permission requests.

Felt et al. found that the vast majority of Android users
do not look at permissions during installation. A plurality of
their laboratory participants were unaware of permissions’
existence, and very few could explain specific permissions
when asked [17]. These results indicate that the Android
permission model leaves room for improvement.

Some mobile platforms use runtime warnings (e.g., Win-
dows Phone and BlackBerry) or eschew install-time warn-
ings altogether (e.g., iOS). However, a decade of usable se-
curity research suggests that habituation may render these
mechanisms ineffective [3,5,10,29,31]. Because habituation
increases with each exposure to a warning [23], a simple way
of minimizing habituation is to limit the number of warnings
to which users are regularly exposed.

As another alternative, several permissions systems have
been built around the concept of “trusted UI” [21, 27, 28].
In these systems, users grant applications special privileges

as part of their natural flow, so their primary task is not
interrupted. When a permission is requested, the user in-
teracts with a system-drawn component, which grants the
application access to the resource. However, this approach
is not applicable to every possible permission request (e.g.,
some requests may need to be granted at a future time or
otherwise cannot be integrated into the user’s flow).

Based on the observation that no single approach is appro-
priate for all situations, Felt et al. developed a framework for
choosing the most appropriate permission-granting mecha-
nism for each given permission [14]. In order to minimize ha-
bituation, the framework recommends that users should not
be explicitly prompted when applications request permission
to perform actions that can either be completely undone or
pose no more harm than an annoyance. Instead, these per-
missions should be “implicitly granted”—but in these cases,
users should be provided with attribution mechanisms so
that they can identify how applications are using their mo-
bile devices and stop or undo any undesirable actions. Felt
et al. estimate that 55% of Android permissions can be im-
plicitly granted [14]. However, to our knowledge, no one has
empirically evaluated the mechanisms that might be used to
attribute behaviors to these implicitly-granted permissions.

3. FOUNDATIONS
In preparation for designing and evaluating our attribu-

tion mechanisms, we conducted an online survey of 189 smart-
phone users and performed a qualitative experiment with
eight Android users.

We designed our online survey with the goal of determin-
ing whether smartphone users understand the attribution
mechanisms they already have on their devices, whether
they make use of those mechanisms, and whether they un-
derstand that background applications may be as likely to
be responsible for inappropriate behaviors as foreground ap-
plications (thus necessitating the need for attribution mech-
anisms to disambiguate the cause of a misbehavior). We
followed up this survey with a qualitative experiment where
we met in-person with Android users to better understand
where people look on their devices when they are attempting
to identify the cause of a misbehavior.

3.1 Internet Survey
In February 2013, we recruited 189 Android and iOS users1

to participate in a survey using Amazon’s Mechanical Turk.
Our respondents included more men than women (67.8%
male), and ages ranged from 18–66 (µ = 28.3, σ = 8.2).
The survey began with a scenario:

Imagine you received a very high phone bill due
to data usage. Explain the steps you would take
using your smartphone to determine which ap-
plication was likely responsible.

The purpose of this question was to understand the first
place where smartphone users would look. Additionally, all
users of Android 4.0 and later have a panel within the Set-
tings application that displays data usage on a per-application
1We asked participants to provide their smartphone’s make
and model, which allowed us to filter out users of other plat-
forms post-hoc. Likewise, we also included instructions for
participants to find and report the exact version of their
smartphone’s operating system, however, we did not collect
this information from 65 of our 189 respondents.

2

basis. Thus, we were curious if these users understood that
this feature already existed on their devices. They did: of
the 45 respondents who used Android 4.0 or later, 33 (73%;
95%CI: [58%, 85%]) indicated that they would access this
sub-panel of the Settings application. Among our other re-
spondents, the most common response was that they would
blame whatever application they used the most (32% of 79;
95%CI: [22%, 43%]):

• “First, I would think about which apps I use most fre-
quently. Then, I would open those apps and try to
figure out which ones use a lot of data.”

• “I would check to see which apps are active the most.”

• “I might first try to narrow it down to any apps most
recently installed.”

• “I would likely open my task manager to see what was
running.”

Surprisingly, the next most common response among users
of iOS and earlier version of Android was that they would
inspect their device’s Settings application for clues (21.5% of
79; 95%CI: [13%, 32%]). Despite the fact that these respon-
dents do not actually have this feature, our results indicate
that placing this attribution mechanism within the Settings
application is intuitive to many smartphone users.

As of iOS 6, users now have the ability to use the Set-
tings application to monitor how applications access location
data, contacts, calendars, reminders, the photo library, and
Bluetooth pairing [8]. We included a multiple choice ques-
tion in the survey to examine whether the 40 respondents
who used iOS 6 understood that they had this ability:

Some smartphones allow you to monitor how apps
make changes or use system resources. Which of
the following resources do you believe you can
monitor on your device (i.e., determine which
app was responsible)?

We supplied respondents with multiple options, includ-
ing four of the aforementioned iOS 6 resources (we omitted
reminders and Bluetooth pairing). We included six other
resources so as to not prime participants to the new iOS 6
attribution mechanisms (we therefore do not include these
six others in our analysis). On average, half of our respon-
dents who used iOS 6 were aware of these attribution mech-
anisms, further corroborating our earlier findings that the
Settings application is an intuitive location for this type of
information:

• Location: 55% of 40 (95%CI: [39%, 71%])

• Photos: 43% of 40 (95%CI: [27%, 59%])

• Contacts: 40% of 40 (95%CI: [25%, 61%])

• Calendar: 35% of 40 (95%CI: [21%, 52%])

Finally, we asked participants about background appli-
cations to determine whether smartphone users understand
that an application running in the background maintains the
same abilities that it had when in the foreground:

Imagine you are using a smartphone application
and then return to the home screen to launch a
different app. What happens to the original app?

We provided participants with four multiple-choice an-
swers (in addition to “other” and “I don’t know”):

• “It runs in the background, but with fewer abilities”
(32.8% of 189; 95%CI: [26%, 40%])

• “It goes into a suspended state”
(27.5% of 189; 95%CI: [21%, 35%])

• “It runs in the background, but with the same abilities”
(22.2% of 189; 95%CI: [17%, 29%])

• “It stops running”
(6.9% of 189; 95%CI: [4%, 12%])

For both iOS and Android, the correct answer is that “it
runs in the background, but with the same abilities.” On
Android, a background application can even draw over other
applications. We do note that some participants may have
based their answer on a background application’s limited
ability to capture input events. However, neither operating
system limits the API calls of a background application2.
This answer was selected by only 42 respondents (22% of
189). We did not observe statistically significant differences
between users of iOS and Android. This finding by itself
strongly shows the need for attribution mechanisms to help
users better understand how applications are accessing a
mobile device’s resources, since they are otherwise likely to
incorrectly attribute a misbehavior to whatever application
was running in the foreground at the time that they noticed
the misbehavior.

3.2 Qualitative Experiment
We followed up our online survey with an in-person quali-

tative experiment. Our goals were to better understand how
users discover resource usage information, whether users no-
tice passive notifications, and whether users know that no-
tifications in the status bar can be expanded. We designed
three scenarios to investigate these questions:

1. We first asked participants to use the smartphone to
identify the likely cause of a data overage. The purpose
of this task was to see whether they would navigate to
the Settings application.

2. Next, we asked each participant to use the smartphone
to determine the cause of an unexpected change to the
smartphone’s wallpaper. The purpose of this task was
to see where participants might expect to find infor-
mation to identify the cause of this change.

3. Finally, we had them perform a distraction task (i.e.,
use a news reader application) while we made a no-
tification appear in the status bar. The purpose was
to see whether they would notice the notification and
whether they knew that the notification drawer could
be expanded to show additional information.

We recruited participants from Craigslist, offering them
$35 cash in exchange for their time. Our only screening
requirement was that every participant had been an Android
user for at least six months. Our sample consisted of eight
people (5 female, 3 male), who ranged in age from 25–49.

We met each participant individually at a local coffee
shop. To begin, we told the participant that the purpose
of the study was to understand how people interact with

2While Apple’s review process is supposed to identify and
reject certain behaviors while an application is in the back-
ground, and a background application is more likely to be
killed if it deviates from these guidelines, there are no access
control mechanisms to enforce them [2].

3

smartphones. We gave an overview of the session and asked
the participant to think aloud as he or she completed each
scenario. As an example of how to think aloud while com-
pleting a task, we asked the participant to find the version of
Android running on their personal device. This task served
the dual purpose of revealing which version of Android they
used. Three of the participants’ smartphones ran Android
4.0 or later, three ran a variant of Android 2, and two par-
ticipants did not have their smartphones with them.

During the experiment, the participant used a Galaxy
Nexus running Android 4.2 to complete the scenarios. We
created a background application which we installed on the
phone to display a custom notification during the third sce-
nario. For the first task, we asked the participant to imagine:

On your latest phone bill, you see that you have
unexpected overage charges for going over your
data plan. You don’t remember using your smart-
phone more than usual and suspect something
happened on the smartphone. How do you iden-
tify what caused the overage (or what is primar-
ily responsible)?

We analyzed the transcripts to identify whether the par-
ticipant found the data usage screen in the Settings appli-
cation on their own, and whether they had experience with
the screen. Those who had experience with Android 4.0
or later may have seen this screen before; the screen would
have been a new feature for those with an older version of
Android. Half of the participants, four of eight, immedi-
ately visited the data usage screen. Two participants found
the screen after explaining other avenues they would explore
first, and two participants found the screen only after the
experimenter prompted them to explore the smartphone.
Half of the participants said they would call their service
provider first, and only explored the smartphone after the
experimenter’s prompting. None of the participants claimed
to have seen the data usage screen prior to the experiment,
not even the three who owned smartphones running Android
4.0 or later.

For the second scenario, the experimenter asked:

Imagine you notice that the wallpaper is a pic-
ture of Justin Bieber even though it used to be a
picture from your last vacation. How would you
change the wallpaper back to a picture of your
choice? Imagine you are certain that you didn’t
change the background picture, how would you
figure out what happened?

We designed the scenario knowing it was unsolvable—we
wanted to understand where people go to discover informa-
tion when an unexpected change occurs. All of the par-
ticipants correctly named a way to correct the wallpaper.
But, because there is no way to identify how the wallpaper
changed, the steps participants took to identify the respon-
sible application varied. Three participants said they would
suspect a friend, three others said they would assume the
smartphone was bumped while in a pocket or purse, and
one would attribute the change to a glitch in the software.
Thus, without prompting, very few stated that an applica-
tion could be responsible.

After a reminder that an application could be the culprit,
four participants suggested they would look for relevant in-
formation in the Settings application. One participant said

he would list his recently installed applications and uninstall
them. He continued to say that if he was unable to single
out the offending application, he would wipe his smartphone,
something he claimed to have done before.

In the third scenario, we asked each participant to browse
the day’s headlines using the BBC News application. After
thirty seconds, a second study coordinator caused a passive
icon to appear in the status bar that indicated that the
Facebook application was using the camera to record.3 We
designed the experimental protocol such that the participant
had one minute to interact with the notification prior to
being prompted. None of the participants did so.

One minute after the icon appeared, the experimenter
asked, “Is there an icon in the upper lefthand corner of the
status bar?” At this point, every participant acknowledged
the presence of the icon. When the experimenter asked, “Did
you notice the icon while you were using the BBC applica-
tion?”, only three of the participants said they did. After
their attention was drawn to the icon, all of the partici-
pants except one knew what the icon meant and success-
fully interacted with the icon to learn that Facebook had
enabled the video recorder. Half of the participants claimed
to be unaware that an application could enable the video
recorder from the background, but the experimenter quickly
explained that the notification was fake.

As a final question, the experimenter asked, “What should
you be able to do from the notification?” Half of the partic-
ipants said they would want to know why the application
was using the resource, and a link to the application would
be useful. Other participants expressed that a way to stop
the recording would be most useful.

3.3 Design Implications
Our online survey and qualitative experiment suggest that

many Android users are unaware that applications running
in the background may be able to access the same hardware
and software resources that they associate with applications
running in the foreground. Likewise, users do not readily as-
sociate system changes with misbehaving applications. This
indicates that attribution mechanisms are needed to help
users better understand how third-party applications are us-
ing their devices. At the same time, most Android users
appear to be familiar with both the status bar and Settings
application, and look to these for additional information.

Our results suggest that when system changes occur, it
may be helpful to place attribution information in places
where users might go to undo those changes. For instance,
all of our qualitative experiment participants correctly indi-
cated how to undo an undesirable wallpaper change. Thus,
it may be intuitive to annotate these settings panels with in-
formation to attribute the source of the previous wallpaper
change (i.e., the user or a specific application). Likewise,
our results show that users are familiar with the status bar
and understand that they can expand it to yield additional
information about an application’s behavior. Thus, we be-
lieve that this may be an intuitive location for an attribu-
tion mechanism to identify the source of an ongoing behavior

3In our original design, we used a download icon. However,
our first participant noted that he noticed the icon, but did
not interact with it because it was probably just an auto-
matic update, which happens often. Therefore, we switched
to using the video recording icon because we thought users
would be more motivated to investigate it.

4

(e.g., naming the application that is causing the device to
vibrate over a prolonged period of time). We decided to
implement these two attribution mechanisms and evaluated
them in the laboratory.

4. METHODOLOGY
Presently, smartphones allow users to discover only lim-

ited information about how applications utilize device re-
sources. If an application is misbehaving, in many cases the
use of a system resource might go unnoticed by the user.
In our research, we sought to address these shortcomings
by designing ways to communicate the use of system re-
sources to users. In our study, we limited our investigation
to permissions that protected users from relatively minor
risks (i.e., annoyances or changes that could be undone),
which could therefore be implicitly granted. The specific
attribution mechanisms that we examined were passive no-
tifications and settings panel annotations.

We conducted a laboratory experiment to examine how
people react to applications that misbehave, with a focus
on the steps they take to attribute the misbehavior. In this
section, we describe the conditions we tested in our study,
the tasks we asked participants to complete, and the overall
protocol for a single session. We told all participants that
they were recruited to review new applications, and while
doing so, we triggered misbehaviors and observed whether
they would use our attribution mechanisms to identify the
applications responsible for the misbehaviors.

4.1 Conditions
During the study session, we provided each participant

with a Samsung Nexus S running Android 4.1.1 to use during
the experiment. We instrumented all of the smartphones, as
described in Section 4.3. We gave participants assigned to
the Control condition smartphones that we instrumented
to misbehave and log user events. We also gave participants
assigned to the Experimental condition instrumented smart-
phones, but these smartphones had additional features, in-
cluding passive notifications to indicate an application’s use
of the vibrate permission (Figure 1), and attribution infor-
mation to note changes to the wallpaper (Figure 2).

4.2 Task Design
We exposed participants to two different misbehaviors,

each in two phases. The misbehaviors consisted of an appli-
cation causing the smartphone to continuously vibrate and
an application changing the wallpaper; the order of the mis-
behaviors was randomized by session. The first phase of each
misbehavior occurred while participants were engaged in an
application evaluation task. During this phase, we did not
prompt participants about the misbehavior and observed
whether or not they would notice the misbehavior, investi-
gate it, and then comment about it in their evaluations. In
the second phase, the experimenter alerted the participants
to the misbehavior and prompted them to identify the re-
sponsible application. We included both phases as a result
of the qualitative experiment described in Section 3.2. In
that experiment, none of the participants interacted with
the passive icon that appeared in the upper left hand corner
of the status area without us first prompting them. Once
prompted to comment on it, nearly all participants under-
stood what the notification signified and how to interact
with it to discover additional information.

When we did not prompt participants, each misbehavior
was masked by an application evaluation task: we told par-
ticipants that their primary task was to write reviews. For
the vibration misbehavior, we installed three timer applica-
tions that had been granted the vibration permission, so that
each application could be plausibly blamed for the vibration
misbehavior if a participant looked at the permission man-
ifests within the Settings application. We gave participants
a list of applications to explore and then review in order.
Each list contained the three timer applications in random
order, followed by a dice game. While the participants ex-
plored the dice game, we made it appear as though one of
the timer applications was making the phone continuously
vibrate.

For the wallpaper misbehavior, we installed three draw-
ing applications that each required permission to change the
wallpaper. To increase the likelihood that participants no-
ticed the changed wallpaper, we asked participants to evalu-
ate three widgets after using and reviewing the three draw-
ing applications.4 We randomized the order in which par-
ticipants first ran each of the drawing applications.

We intended for participants to be surprised by the misbe-
haviors, and suspected that some participants might not no-
tice that the wallpaper had been changed. Without prompt-
ing, we hypothesized that participants in the Control con-
dition would attribute the misbehaviors to the applications
running in the foreground when the misbehaviors occurred.

4.3 Smartphone Instrumentation
We used the Android Open Source Project (AOSP) [1]

to create a modified version of Android 4.1.1, the version
recommended for the Nexus S. We created forks for both
the Experimental and Control conditions. We instrumented
both to log when the participant opened the Display Set-
tings, when the participant opened the Wallpaper Chooser,
and when the participant opened the recent tasks menu. We
used the existing Android system logs to identify when ap-
plications were started or stopped, when the user visited
the home screen, when the user expanded the notification
drawer to view notifications, and when the user visited the
Apps area of the Settings application.

To control the misbehaviors in both conditions and the
attribution information in the Experimental condition, we
created a custom application that allowed us to trigger each
misbehavior and blame a randomly-selected running appli-
cation. The vibration misbehavior pulsed the phone’s vi-
bration motor twice every seven seconds, for a duration of
roughly five minutes, or until the blamed application was
killed. A persistent notification for the vibration was dis-
played on the Experimental smartphones (Figure 1). The
wallpaper misbehavior changed the smartphone’s wallpaper
to a picture of Justin Bieber. We modified the Experimental
smartphones to annotate the Display Settings and Wallpa-
per Chooser with provenance information (see Figure 2).

4.4 Protocol
We assigned each participant an individual desk equipped

with dividers, a smartphone, and a laptop. The laptop was

4Android widgets are lightweight informational applications
that allow users to customize their home screens. Because
they do not occlude the home screen, we reasoned that a user
is more likely to notice a wallpaper change when interacting
with a widget rather than a fullscreen application.

5

(a) Vibration Notification (b) Expanded Vibration Notification

Figure 1: The vibration notification icon in the status area (a) and after the user has expanded it (b).

(a) Annotated Settings (b) Annotated Chooser

Figure 2: The wallpaper change attribution in the Display Settings (a) and in the Wallpaper Chooser (b).

used for completing an online survey that presented instruc-
tions, the randomized list of applications to review, and sur-
vey questions at check points: after each of the two evalu-
ation periods (wherein the misbehaviors first occurred un-
prompted), after each of the two misbehaviors occurred with
prompting, and then at the end of the experiment (i.e., the
exit survey). We told participants that the primary purpose
of the study was exploring and reviewing applications, and
the majority of the session was spent on this task (approxi-
mately 45 minutes).

Before participants arrived at the lab, we randomly dis-
tributed the instrumented smartphones among the desks.
When the participants arrived, we instructed them to sit at
a desk with a smartphone and to review the consent form
while they waited for the session to begin. In this man-
ner, the assignment of the two conditions was double blind
(we later determined the condition assignment by examining
the logs stored on each smartphone). We ran each session
according to a timed schedule, and so we could not admit
latecomers. Each session was conducted by two study co-
ordinators: one read the script and distributed the study
material, while the other observed and initiated the appli-
cation misbehaviors.

The instructions on the laptops provided participants with
a list of applications to explore and then review. For clarity,
we will present the protocol as though the vibration misbe-
havior occurred first. For the first task, we told participants:

Your task is to review three timer apps and a
dice game. Your task is to play with apps on
the smartphone in the order listed on the laptop
for three minutes each. Use the scratch paper
provided to take notes about what you like and
don’t like about each app. You will use these
notes later to write reviews about each app.

Participants spent the next twelve minutes playing with
each application in the order listed on the laptops in front
of them. While participants explored the dice game, after
exploring all three timer applications in random order, the
vibration misbehavior occurred. We included the dice game
to ensure that all three timer applications were running in
the background at the time of the misbehavior. Likewise,
we believed participants would hold the devices to use the
dice game, and therefore would be more likely to notice the
vibration. The study coordinator distributed four review
sheets before the exploration period ended, and asked par-
ticipants to spend the next ten minutes writing a review
of each application. The study coordinator announced the
passage of time in two and a half minute intervals.

For the second task, we told participants:

Your task is to review three drawing apps and
some widgets. To begin, your task is to play
with apps on the smartphone in the order listed
on the laptop for three minutes each. Use the

6

scratch paper provided to take notes about what
you like and don’t like about each app. You will
use these notes later to write reviews about each
app.

Again, participants spent twelve minutes exploring each
application. While participants played with the three wid-
gets, the smartphone’s wallpaper changed to a picture of
Justin Bieber. Then, the study coordinator distributed four
review sheets and gave participants ten minutes to write
reviews of the three applications and one of the widgets.

After the review period, participants answered several ques-
tions about application behaviors during the review period
using the laptop survey. The questions were designed to
examine whether participants noticed the misbehaviors and
attributed them to any applications, without explicitly prim-
ing them to those misbehaviors.

After participants finished these questions, the prompted
misbehavior phase of the study began. The order of the mis-
behaviors matched the previous phase. During the vibration
misbehavior, the study coordinator announced:

Using this computer, we just made one of the
three timer apps start vibrating your smartphones.
Your next task is to identify which app is respon-
sible. You will have five minutes. Enter your an-
swer in the survey, and continue until you see a
page that says, “Stop.”

After three minutes, the study coordinator announced:

If you’re unsure which app is responsible, please
make a guess and continue.

After completing the survey questions, participants expe-
rienced the second misbehavior, and were prompted by the
coordinator. When the wallpaper was changed, the study
coordinator announced:

One of the three drawing apps has changed your
smartphone’s wallpaper. Your next task is to
identify which app is responsible. You will have
five minutes. Enter your answer in the survey,
and continue until you see a page that says,“Stop!”

Three minutes later, the study coordinator announced:

If you’re unsure which app is responsible, please
make a guess and continue.

After the full five minutes had passed, the study coordinator
announced that the participants were to continue answering
the survey questions. At this point, the survey asked di-
rect questions about the attribution mechanisms and the
misbehaviors. Upon completion of the survey, we debriefed
participants, answered any questions, and then compensated
them.

4.5 Participants
In February 2013, we advertised our study on Craigslist in

the San Francisco Bay Area. The advertisement stated that
we were studying how people interact with applications on
Android smartphones. We used an online screening survey
to verify potential participants’ availability, that they were
at least 18 years of age, and to collect data on their personal
smartphone’s Android version. We offered participants a $35

Experimental Control

Vibration Misbehavior (without prompting)
n = 37 n = 39

Noticed 21 (57%) 16 (41%)
↪→Correctly Identified 17 (81% of 21) 2 (13% of 16)

Vibration Misbehavior (with prompting)
n = 36 n = 39

Correctly Identified 29 (81%) 12 (31%)

Table 1: Participants in each condition who success-
fully identified the source of the vibration. The first
two rows depict the number of participants who no-
ticed and (of them) correctly identified the source
of the misbehavior without first being prompted,
whereas the last row depicts the number who cor-
rectly identified it after being prompted.

Visa gift card in exchange for participating in a one hour
session. We allowed eligible participants to submit their
availability and preferences to attend one of nine sessions.

We scheduled 121 Android users to participate, however,
our final sample included 76 people.5 Overall, our sample
was 68% male and included ages 19–59 (µ = 34.2, σ = 10.6).
The demographics within each condition closely matched the
overall sample (Control : 69% male, age: µ = 32.8, σ = 10;
Experimental : 68% male, age: µ = 35.8, σ = 11.1). Our
sample represents a range of occupations including accoun-
tant, tutor, insurance adjustor, freelancer, executive assis-
tant, and restaurant staff.

5. ANALYSIS
We sought to test two hypotheses with our laboratory

experiment:

• H1: Experimental condition participants will be signif-
icantly more likely to identify the application respon-
sible for changing the wallpaper.

• H2: Experimental condition participants will be signif-
icantly more likely to identify the application respon-
sible for the vibrating.

We asked participants to identify the sources of two misbe-
haviors: vibrating and changing the wallpaper of the smart-
phone. The experiment was designed to evaluate whether
or not the attribution mechanisms helped participants diag-
nose the cause of these misbehaviors.

Across both misbehaviors, we observed that participants
who noticed the misbehaviors in the Experimental condi-
tion were significantly more likely to identify the causes of
the misbehaviors than participants in the Control condition,
who did not have access to these attribution mechanisms.
In this section, we analyze how participants interacted with
each attribution mechanism when explicitly told to pinpoint
the source of each misbehavior and whether they noticed the
mechanism prior to being prompted.

5.1 Passive Notifications
We instrumented the Experimental condition smartphones

to display an icon in the status area when we triggered

5We anticipated a no-show rate of approximately 20% from
prior experience. The seemingly high no-show rate may have
been influenced by our policy of denying latecomers.

7

the vibration misbehavior (Figure 1a). When the notifica-
tion drawer was expanded by a participant’s dragging mo-
tion, the notification identified the name of the application
blamed for the vibration (Figure 1b).

5.1.1 Attribution
Overall, we found that the vibration notifications were

extremely effective when we prompted participants to iden-
tify the source of the vibration (Table 1): 29 (81% of 36)6

participants in the Experimental condition were able to cor-
rectly identify the application, compared to only 12 (31%
of 39) participants in the Control condition (p < 0.0005,
φ = 0.500, one-tailed Fisher’s exact test). Control partici-
pants did no better than random guessing at identifying the
responsible application (χ2 = 0.115, p = 0.73, chi-square
goodness of fit), whereas Experimental participants did sig-
nificantly better (χ2 = 29.538, p < 0.0001, chi-square good-
ness of fit). Thus, H1 is accepted.

Because we asked participants to select the misbehaving
application from a multiple choice list of all eight applica-
tions that they had reviewed, we expected some participants
to answer this question correctly due to random guessing.
Of the participants who selected correctly, only 2 (7% of 29)
participants in the Experimental condition claimed it was
due to random guessing, whereas 24 (83% of 29) specifically
mentioned interacting with the notifications. Our logs con-
firmed that 28 correct Experimental condition participants
(97% of 29) expanded the notification drawer immediately
after the misbehavior occurred. In the Control condition, 5
participants (42% of 12), a plurality, specifically mentioned
arriving at the correct answer by random guessing. The ex-
planations from the other correct Control participants sug-
gest that all but two correct responses may also be explained
by chance:

• “Nothing else has a reason to vibrate”

• “Notification at the top”

• “There was a notification at the top of the screen that
said time up”

• “Because it was set to vibrate at 00:00:00”

A total of five Control condition participants attributed
their selections to the notification drawer (three were cor-
rect, two were incorrect), though these participants did not
see the attribution notifications that we created for the Ex-
perimental condition participants. Instead, these partici-
pants viewed the notifications generated by the individual
timer applications, and by chance, in two of these cases,
these happened to be the correct applications to which we
attributed the vibration. Our logs indicate that after be-
ing prompted about the vibration misbehavior, twenty-seven
Control condition participants (69% of 39) expanded the no-
tification drawer in hopes of identifying the misbehaving ap-
plication. However, without system-generated notifications
to attribute behaviors to particular applications, the only
way of identifying the cause of an ongoing misbehavior is by
individually killing applications until the misbehavior stops.
Using this method, only two of the Control condition par-
ticipants correctly identified the sources of the misbehavior.

During this task, we asked participants to evaluate appli-
cations that all had the ability to vibrate the smartphone
6Due to technical problems, one Experimental condition par-
ticipant did not receive the vibration misbehavior when we
prompted them.

in order to make the source of the vibration ambiguous. If
a participant based her decision on an application’s granted
permissions, as shown in the Settings application (Figure 3),
she would have found that all three of the timer applica-
tions had been granted permission to vibrate. Nonetheless,
six participants in the Control condition identified applica-
tions by incorrectly stating that their selected applications
were the only applications with the ability to vibrate the
smartphone. From our log files, we can confirm that none
of these participants ever viewed the panel in the Settings
application that listed this information, and therefore these
participants were inferring each application’s granted per-
missions based on its visible features (as determined by in-
teracting with the application during the earlier phases of
the experiment). Specifically, these participants erroneously
assumed that an application’s abilities could be determined
based on the options available in the user interface. This re-
sult corroborates Felt et al.’s finding that very few users view
permissions and instead determine an application’s abilities
based on either their familiarity with it or reviews [17].

Of the 34 participants between both conditions who could
not correctly identify the misbehaving application, the most
common strategy was random guessing (38% of 34), while
the second most common strategy was to choose the ap-
plication that was in use at the time that the misbehavior
occurred (29% of 34). This finding corroborates our online
survey results (Section 3): many users are unaware that ap-
plications running in the background have the same abilities
as applications running in the foreground.

Finally, we asked participants to report the confidence of
their selections using a five-point Likert scale (“very con-
fident” to “very unconfident,” anchored around “unsure”).
Those in the Experimental condition reported a median of
five (i.e., “very confident”), whereas those in the Control
condition reported a median of three (“unsure”); this differ-
ence was statistically significant (U = 330.0, p < 0.0005).
More importantly, only in the Experimental condition were
correct answers correlated with a high degree of confidence
(ρ = 0.526, p < 0.0005). We observed no such correlation in
the Control condition.

While it is clear that participants understood how to use
the attribution notification when we prompted them to pin-
point the source of the misbehavior, our next question was
whether or not they sought out this information, and reacted
to it, on their own initiative.

5.1.2 Exploration of the Notification
During the first phase of the experiment, when we did

not prompt participants, we caused the phones to vibrate
while the participants were exploring the fourth application
(i.e., while all four applications were running) so as to in-
troduce ambiguity as to which application was responsible.
As a proxy for whether or not participants noticed the al-
leged misbehavior, we examined whether or not they men-
tioned anything about the phone vibrating either in their
application reviews or in their survey responses.7 Overall,

7After participants turned in their review sheets, they an-
swered survey questions about whether any of the applica-
tions behaved unexpectedly, such as “crash or stop func-
tioning,” “unexpectedly access phone hardware (e.g., flash-
light, camera, vibrate, microphone, etc.),” or “unexpectedly
change system settings (e.g., wallpaper, desktop icons, fa-
vorites, etc.).” Our goal was to determine whether partici-

8

Experimental Control

Wallpaper Misbehavior (without prompting)
n = 35 n = 39

Noticed 5 (14%) 8 (21%)
↪→Correctly Identified 0 (0% of 5) 0 (0% of 8)

Wallpaper Misbehavior (with prompting)
n = 35 n = 38

Correctly Identified 12 (34%) 3 (8%)

Table 2: Participants in each condition who success-
fully identified the source of the wallpaper change.
The first two rows depict the number of partici-
pants who noticed and (of them) correctly identified
the source of the misbehavior without first being
prompted, whereas the last row depicts the number
who correctly identified it after being prompted.

thirty-seven participants (49% of 76) noticed the vibration
misbehavior.

Of the thirty-seven participants who noticed the vibration,
twenty-two attributed it to a specific application in their
reviews, twelve named a specific application in the survey
(and not the reviews), and three noted the vibration, but
did not identify the application that they believed to be re-
sponsible (e.g., they indicated the misbehavior on multiple
reviews). We observed that participants in the Experimen-
tal condition were significantly more likely to use the review
forms to attribute the misbehavior to a particular applica-
tion (p < 0.0205; one-tailed Fisher’s exact test). We believe
this indicates that the participants who viewed the noti-
fications were more confident in their identifications, and
therefore more willing to “name names” in the reviews, so to
speak. Moreover, these participants were more likely to be
correct: without being prompted, seventeen Experimental
condition participants (81% of 21) and two Control condi-
tion participants (13% of 16) correctly identified the applica-
tion that caused the misbehavior (p < 0.0005, Fisher’s exact
test, φ = 0.678). Our logs confirm that all 17 Experimen-
tal condition participants expanded the notification drawer
immediately after the vibration misbehavior.

5.2 Settings with Provenance
We used notifications to represent the vibration misbe-

havior because we believed that they were well-suited to
convey information about an ongoing annoyance. However,
we also wanted to examine whether annotations in Settings
would be successful at informing users about one-time mis-
behaviors with a lasting effect, such as changes to system
settings. We hypothesized that adding these attributions in
Settings would be intuitive to users because this is where
they would normally go to undo an undesirable change.
In our experiment, when a randomly-selected application
changed the smartphone’s wallpaper, Experimental condi-
tion participants could find the name of the application that
caused the change by viewing either the Display Settings or
the Wallpaper Chooser (Figure 2).

5.2.1 Attribution
When we explicitly prompted participants to identify the

application that allegedly changed the smartphone’s wall-
paper, we found that the Display Settings and Wallpaper
Chooser annotations were significantly more effective than

pants had noticed the misbehaviors without priming them.

no annotations (Table 2): twelve participants (34% of 35)8

in the Experimental condition named the correct applica-
tion compared to only three participants (8% of 38) in the
Control condition (p < 0.006, φ = 0.326, one-tailed Fisher’s
exact test). Thus, H2 is accepted.

Of the twelve Experimental condition participants who
chose the correct application after we explicitly prompted
them, ten (83% of 12) said that they based their selections
on the attribution mechanisms. The logs confirmed that all
ten viewed one of the two attribution mechanisms after we
explicitly prompted them to identify the source of the mis-
behavior: three viewed the annotated Wallpaper Chooser,
six viewed the Display Settings, and one participant viewed
both attribution mechanisms. As before, we expected a
certain number of “false positives”—correct answers due to
guessing—in each condition. Unlike the previous task, in
which Control condition participants could still identify the
source of the ongoing vibration misbehavior by terminating
applications until the misbehavior stopped, there was no
way of identifying the cause of a one-time system change,
like changing the wallpaper, on these Android devices. Two
Experimental condition participants—who did not notice the
annotations in Settings—and three Control condition partic-
ipants selected the correct application by chance:

• “I’m guessing, I’m not sure”

• “None were running when the wallpaper changed, but
Coloring Princess seems very poorly coded, contained
ads, and had an option to set wallpapers. This would
be my bet.”

• “Based it on the icon of the app, [which] had a celeb
on it, so the wall paper also changed to a celeb.”

• “I guessed because it happened after I used the app pre-
viously”

• “It asks do you want to save or set as wallpaper”

Of the fifty-eight participants across both conditions who
could not identify the source of the wallpaper change, the
most common strategies were random guessing (33% of 58)
and blaming the application that was in the foreground
at the time that the misbehavior occurred (33% of 58).
Across the two conditions, participants’ selection strategies
did not significantly differ. Similar to the previous task, sev-
eral participants—six of the fifty-eight—indicated that they
made their selections based on the application’s visible fea-
tures related to the wallpaper:

• “Coloring Princess is the only app which allows one to
set a picture or drawing as wallpaper.”

• “I am not sure between Sketch Free 2 and Coloring
Princess: both provided an option in the settings menu
to set the image as wallpaper.”

• “I can save it into the desktop as wallpaper.”

• “I thought I remembered seeing a wallpaper option.”

As can be seen from these quotes, many participants in-
ferred each application’s ability to change the wallpaper
based on whether or not such a feature appeared in the
application’s user interface. In truth, the only way of deter-
mining an application’s abilities is via the Apps sub-panel
8Due to technical difficulties, two participants in the Exper-
imental condition received neither of the wallpaper misbe-
haviors, and one participant in the Control condition did not
receive the wallpaper misbehavior after we prompted them.

9

(a) First Page (b) Second Page

Figure 3: The application information in the Set-
tings application (a). Users can only see permission
information if they know to scroll below the fold (b).

within the Settings application, which lists all of the per-
missions declared in the application’s manifest file. From
our log files, only eight participants (14% of 58) could have
viewed this information. However, this is likely an upper
bound on the number who viewed permissions for the fol-
lowing reasons:

1. The Android device logs only show us that participants
accessed the Apps sub-panel of the Settings applica-
tion, and not whether they further selected a specific
application in order to view its permissions (logging
this would have required us to replace Settings with
our own application, rather than using the existing
debugging facility).

2. If they viewed a specific application’s abilities, we could
not capture its name, and therefore we do not know
whether they looked at the permissions for one appli-
cation or many.

3. When an application is selected from Settings, its per-
missions are not shown unless the user knows to scroll
to the bottom of the page; by default, other informa-
tion about the application fills the screen (Figure 3).

Furthermore, if participants did determine whether an ap-
plication had the ability to change the wallpaper based on
the permissions shown in the Settings application, this would
have narrowed the list of possible culprits down from the
eight multiple-choice options to the three applications that
had this ability. That is, without the attribution mecha-
nism provided to Experimental condition participants, there
was no way of identifying the misbehaving application with
certainty. At the same time, despite the significant improve-
ment in the Experimental condition, only a minority of par-
ticipants were able to correctly identify the application re-
sponsible for the misbehavior. Upon examining our logs,
we concluded that the majority of participants did not en-
counter either attribution mechanism: a total of fourteen
participants encountered either the annotated Display Set-
tings or the annotated Wallpaper Chooser, ten of whom

(95%CI: [42%, 92%]) based their decisions on the informa-
tion in these attribution mechanisms.

Finally, as we observed with the vibration misbehavior,
correctly identifying the application responsible for the mis-
behavior was highly correlated with participants’ confidence
in those responses among participants in the Experimental
condition (ρ = 0.663, p < 0.0005). We did not observe this
correlation among participants in the Control condition.

5.2.2 Exploration of the Settings Annotations
To gain insight into why the attribution rates were so

low during the wallpaper misbehavior, we examined whether
participants noticed and reacted to the misbehavior prior to
our prompts. Prior to explicitly prompting participants to
identify the cause of the wallpaper change misbehavior, we
discretely triggered the misbehavior during the application
evaluation task, and observed whether they mentioned it in
either their reviews or the computer-based survey. Overall,
a total of 13 participants (18% of 74; 5 in the Experimen-
tal condition and 8 in the Control condition) noticed the
misbehavior. However, not a single participant was able to
correctly attribute the misbehavior to a specific application.

Examining the smartphone logs, we found that without
prompting about the misbehavior, not a single participant
in the Experimental condition encountered either of the two
attribution mechanisms that would have allowed them to
identify the source of the misbehavior. Instead, ten of the
thirteen participants (77%) who noticed the misbehavior
simply attributed it to the application that they were us-
ing at the time. Thus, while these attribution mechanisms
were effective for users who encountered them, they were
unhelpful when participants failed to notice them.

6. DISCUSSION
Through our experiments, we observed that many par-

ticipants assumed that unexpected events on their smart-
phones can be attributed to the application running in the
foreground; they did not realize that applications running in
the background may have the same abilities. Furthermore,
participants made assumptions about a given application’s
abilities—and therefore its potential for misbehavior—based
on the features that were visible to them, rather than the
permissions that it had already been granted. At the same
time, we observed that participants who noticed misbehav-
iors and who had access to attribution mechanisms were
significantly more likely to correctly identify the sources of
misbehaviors. In this section, we discuss some possible ex-
planations for participants’ behaviors, limitations of our ex-
periments, and conclude with future work.

6.1 Explanations
We discuss participants’ potential biases, learning curves,

and how our results are likely applicable to other platforms.

6.1.1 Application Familiarity
We intentionally asked participants to evaluate applica-

tions that we hoped would be unfamiliar to them. If par-
ticipants in one condition were more familiar with an appli-
cation than participants in the other condition, they might
be biased towards or against attributing misbehavior to the
familiar application. To test for this bias in the exit sur-
vey, we asked participants to declare their familiarity with
each application using a five-point Likert scale. We per-

10

formed a Mann-Whitney U test between the two conditions,
comparing the median familiarity scores, and correcting for
multiple testing. We observed no significant differences be-
tween conditions with regard to familiarity with any of the
applications. Thus, if there was a bias toward or against any
of the applications, it did not observably differ between the
two conditions.

6.1.2 Time Heals All Wounds
While participants performed significantly better when we

provided them with attribution mechanisms, we were sur-
prised at their relatively low rate of success at identifying
the source of the wallpaper misbehavior. In the Experimen-
tal condition, only 32% of participants (95%CI: [18%, 50%])
were able to correctly identify the application that changed
the wallpaper (once they were made aware of the misbehav-
ior). In contrast, 78% of these participants (95%CI: [62%,
90%]) were able to successfully use the notification drawer
to correctly identify the cause of the vibration misbehav-
ior. This contrast was statistically significant (Z = −3.900,
p < 0.0005, Wilcoxon Signed Ranks test).

One possible explanation for this is that participants were
simply more familiar with seeing notifications in the status
area and therefore were more likely to look to this area for
potential clues when trying to determine the cause of each
misbehavior. Our online survey, qualitative experiment, and
experimental log data suggest that the vast majority of An-
droid users understand that the status bar provides infor-
mation about application activity and that it is interactive
(e.g., 94.7% of our laboratory participants pulled down the
notification drawer at least once during the experiment). In
contrast to notifications, the annotations that we introduced
to identify the cause of the wallpaper misbehavior have not
been used before, and therefore it is unclear whether partic-
ipants knew to look for these.

We believe that this modest success rate may be of little
concern for two reasons. First, if platform designers were to
introduce similar annotations, users will likely become more
aware of them over time, just as they did after Android intro-
duced a Data Usage panel in the Settings application. Sec-
ond, not every user needs to be aware of attribution mech-
anisms for them to have an impact. Felt et al. showed that
most users base their decisions on application reviews [17].
Thus, an application’s misbehavior will likely become widely
disseminated after a small number of savvy users note it in
their reviews. This may be sufficient to protect most users
from misbehaving applications and to incentivize developers
to avoid such misbehaviors.

6.1.3 Other Platforms
We specifically evaluated attribution mechanisms under

the Android platform using existing Android users. How-
ever, we believe that many of our findings are also relevant
to other platforms. For instance, users of iOS 6 can view
the applications that may have accessed their location, con-
tacts, calendars, reminders, photos, and Bluetooth [8]. Our
results suggest that this addition has benefited users.

More broadly, our results support Felt et al.’s permission
model [14]: eliminating requests for permissions that only
represent low-level risks (e.g., annoyances) or whose effects
can be fully reversed, so long as users are provided with at-
tribution mechanisms that help them identify the source of
a misbehavior. The attribution mechanisms that we eval-

uated in this study appear to be successful at doing just
that.

6.2 Limitations
As with all controlled experiments, certain factors may

have skewed our results.

6.2.1 Moral Hazard
One possible explanation for participants’ behavior is moral

hazard: because they were not using their own mobile de-
vices during the experiment, it is possible that they were not
sufficiently motivated to identify the causes of the misbehav-
iors. For instance, this may explain why so few participants
acknowledged the misbehaviors prior to our prompting. The
only way of controlling for this factor would be by instru-
menting participants’ own smartphones that they regularly
use and observing them over a longer period of time.

6.2.2 Multiple Notifications
Another problem we observed was that during the eval-

uation phase, some of the timer applications used notifica-
tions to display information (e.g., amount of time left). Sev-
eral participants in the Experimental condition noticed these
application-drawn notifications alongside our system-drawn
notification. It is possible that this created confusion. If
system-drawn notifications are to be successfully used to at-
tribute application behaviors, they should be styled in such
a way that they are readily distinguishable from application-
drawn notifications [32].

6.2.3 Imprecise Logging
In cases where modifying Android components proved ex-

ceptionally difficult, we used Android’s existing logging in-
formation. This allowed us to see whether a user opened a
particular settings panel, but it did not show us what they
did within that settings panel (e.g., they may have viewed
one or more sub-panels). This was useful in corroborating
participants’ reported behaviors, but it prevented us from
relying on the logs alone to explain responses. Likewise,
while we can definitively say whether they pulled down the
notification drawer or viewed a settings panel, without per-
forming eye tracking, it is impossible for us to say whether
or not they actually read the corresponding text.

6.2.4 Technical Difficulties
Finally, as we noted in our analysis earlier, due to tech-

nical problems, not every participant received all four mis-
behaviors (i.e., two without prompting followed by two with
prompting). In our analysis, we noted two specific par-
ticipant behaviors that resulted in problems: accidentally
killing the study monitor process and rebooting the smart-
phone.

While attempting to identify the cause of the vibration,
several participants arbitrarily terminated running applica-
tions. In six cases, this included our study monitor applica-
tion, which initiated the misbehaviors and attributed them
to other applications. This meant that these participants’
smartphones did not misbehave correctly. This was more
likely to be a problem during the wallpaper misbehavior,
because participants generally killed applications only dur-
ing the vibration misbehavior (likely since it was ongoing
rather than a one-time change). In one of these cases, a
participant showed us that her phone was not vibrating af-

11

ter we prompted her about the misbehavior, which resulted
in us being able to restart it and still collect data for this
misbehavior (though she did not receive the earlier wallpa-
per misbehavior when we did not prompt participants). In
four other cases when the prompted vibration misbehavior
did not occur, our logs confirmed that all of these partici-
pants were in the Experimental condition. All of these par-
ticipants pulled down the notification drawer and blamed
the same application that had caused the vibration misbe-
havior previously before prompting. Thus, we marked these
responses as being correct.

Learning from this oversight, we should have made our
study monitor application a system service, and designed it
to be more robust to these edge cases.

6.3 Future Work
Our results demonstrate that attribution mechanisms can

be a powerful tool to assist users in identifying misbehaving
applications. However, future work is needed to show how
to present such mechanisms more effectively.

The mechanisms we examined in this study were signifi-
cantly more effective at attributing the source of vibration
misbehaviors and wallpaper changes for users who noticed
the misbehaviors, as compared to the status quo (i.e., no
attribution mechanisms). That said, every conceivable mis-
behavior may not always have an attribution mechanism, as
this would rapidly become overwhelming to the user. More
importantly, too many notifications that users find unimpor-
tant will rapidly habituate them to ignoring all notifications.
Likewise, too many options and text within the Settings ap-
plication may overwhelm the users. Thus, we are faced with
the problem of separating the unimportant misbehaviors,
which do not necessarily need to be attributed, from the
important ones that do. Building on Felt et al.’s work [15],
we asked laboratory participants under which circumstances
would they would like to see notifications or annotations to
settings panels in the future.

We asked participants which of the following 17 permis-
sions they would like to see annotations in Settings for:

1. Battery usage (71.1%)

2. Data usage (68.4%)

3. Location access (65.8%)

4. Connected/disconnected WiFi (55.3%)

5. Placed calls (55.3%)

6. Sent SMS (53.9%)

7. Storage usage (50.0%)

8. Photo library access (48.7%)

9. Date/time changed (47.4%)

10. Contact list (address book) access (43.4%)

11. Volume changed (40.8%)

12. Wallpaper changed (38.2%)

13. Read device ID (36.8%)

14. Calendar access (35.5%)

15. Recently paired via Bluetooth (28.9%)

16. Ringtone changed (27.6%)

17. Font changed (26.3%)

The top two items for which participants wanted to see an-
notations in Settings were battery and data usage. All par-
ticipants in our laboratory experiment were Android users
and therefore already had a battery usage attribution mech-
anism within the Settings application, and 30 of them (39%

of 76) used version 4.0 or later, and therefore also had a data
usage attribution mechanism. Another interesting finding
from this data is that none of the new attribution mech-
anisms included in iOS 6 [8] appear at the top of the list.
Thus, while Apple should be applauded for attempting to in-
crease transparency by adding new attribution mechanisms,
it is not clear whether or not the chosen permissions are of
greatest concern to users.

With regard to notifications, we asked participants to
choose from a list of 18 permissions:

1. Vibration (57.9%)

2. Connect/Disconnect WiFi (56.6%)

3. Quit other apps (46.1%)

4. Set alarm clock (42.1%)

5. Connect/Disconnect Bluetooth (40.8%)

6. Playing audio (32.9%)

7. Send call to voicemail (32.9%)

8. Recording audio (28.9%)

9. Disconnect call (28.9%)

10. Recording video (27.6%)

11. Flashlight (27.6%)

12. Change wallpaper (25.0%)

13. Read device ID (22.4%)

14. Change time (19.7%)

15. Change font (14.5%)

16. Change ringtone (14.5%)

17. Modify dictionary (10.5%)

The ability that participants most wanted to see in future
notifications was the ability to vibrate the device—the very
notification that Experimental participants saw during the
experiment (58% of 76). We question this particular result,
since participants may have been biased by the experimen-
tal design to have a stronger reaction to this misbehavior,
as they had just experienced it (it is possible that the desire
for an annotation in Settings for recent wallpaper changes
was also biased). Thus, future work is needed to determine
which permissions should be implicitly granted and repre-
sented with attribution mechanisms.

7. ACKNOWLEDGMENTS
We would like to thank Adrienne Porter Felt, Rowilma del

Castillo, Miho Tanaka, and Refjohürs Lykkewe. This work
was supported by the Intel Science and Technology Center
for Secure Computing and the Air Force Office of Scientific
Research (Grant #29182280-51677-C).

8. REFERENCES
[1] Android Open Source Project (AOSP).

http://source.android.com/.

[2] iOS App Programming Guide: App States and
Multitasking. https://developer.apple.com/
library/IOs/#documentation/iPhone/Conceptual/

iPhoneOSProgrammingGuide/

ManagingYourApplicationsFlow/

ManagingYourApplicationsFlow.html.

[3] T. S. Amer and J. B. Maris. Signal words and signal
icons in application control and information
technology exception messages – hazard matching and
habituation effects. Technical Report Working Paper

12

Series–06-05, Northern Arizona University, Flagstaff,
AZ, October 2006.
http://www.cba.nau.edu/Faculty/Intellectual/

workingpapers/pdf/Amer_JIS.pdf.

[4] R. Böhme and J. Grossklags. The security cost of
cheap user interaction. In Proceedings of the 2011 New
Security Paradigms Workshop, NSPW ’11, pages
67–82, New York, NY, USA, 2011. ACM.

[5] J. C. Brustoloni and R. Villamaŕın-Salomón.
Improving security decisions with polymorphic and
audited dialogs. In Proceedings of the 3rd Symposium
on Usable Privacy and Security, SOUPS ’07, pages
76–85, New York, NY, USA, 2007. ACM Press.

[6] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani.
Crowdroid: behavior-based malware detection system
for Android. In Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile
Devices, SPSM ’11, pages 15–26, New York, NY, USA,
2011. ACM.

[7] J. Cheng, S. H. Wong, H. Yang, and S. Lu.
SmartSiren: virus detection and alert for smartphones.
In Proceedings of the 5th International Conference on
Mobile Systems, Applications and Services, MobiSys
’07, pages 258–271, New York, NY, USA, 2007. ACM.

[8] J. Cipriani. How to control your privacy settings in
iOS 6. http:
//howto.cnet.com/8301-11310_39-57507698-285/

how-to-control-your-privacy-settings-on-ios-6/,
September 19 2012. Accessed: March 6, 2013.

[9] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on Android.
In Proceedings of the 13th International Conference on
Information Security, ISC’10, pages 346–360, Berlin,
Heidelberg, 2011. Springer-Verlag.

[10] S. Egelman, L. F. Cranor, and J. Hong. You’ve been
warned: An empirical study of the effectiveness of web
browser phishing warnings. In Proceeding of The 26th
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’08, pages 1065–1074, New York, NY,
USA, 2008. ACM.

[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design
and Implementation, OSDI ’10, pages 1–6, Berkeley,
CA, USA, 2010. USENIX Association.

[12] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A study of Android application security. In
Proceedings of the 20th USENIX Security Symposium,
SEC ’11, pages 21–21, Berkeley, CA, USA, 2011.
USENIX Association.

[13] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In
Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS ’11, pages
627–638, New York, NY, USA, 2011. ACM.

[14] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and
D. Wagner. How to ask for permission. In Proceedings
of the 7th USENIX Workshop on Hot Topics in
Security, HotSec ’12, pages 7–7, Berkeley, CA, USA,
2012. USENIX Association.

[15] A. P. Felt, S. Egelman, and D. Wagner. I’ve got 99
problems, but vibration ain’t one: a survey of
smartphone users’ concerns. In Proceedings of the 2nd
ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM ’12, pages
33–44, New York, NY, USA, 2012. ACM.

[16] A. P. Felt, K. Greenwood, and D. Wagner. The
effectiveness of application permissions. In Proceedings
of the 2nd USENIX Conference on Web Application
Development, WebApps ’11, pages 7–7, Berkeley, CA,
USA, 2011. USENIX Association.

[17] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: user attention,
comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security,
SOUPS ’12, pages 3:1–3:14, New York, NY, USA,
2012. ACM.

[18] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: attacks and
defenses. In Proceedings of the 20th USENIX Security
Symposium, SEC ’11, pages 22–22, Berkeley, CA,
USA, 2011. USENIX Association.

[19] S. Flosi. comScore Reports October 2012 U.S. Mobile
Subscriber Market Share, November 30 2012.
http://www.comscore.com/Insights/Press_

Releases/2012/11/comScore_Reports_October_

2012_U.S._Mobile_Subscriber_Market_Share.

[20] C. Guo, H. J. Wang, and W. Zhu. Smart phone
attacks and defenses. In ACM Workshop on Hot
Topics in Networks, HotNets ’04, 2004.

[21] J. Howell and S. Schechter. What you see is what they
get: Protecting users from unwanted use of
microphones, cameras, and other sensors. In
Proceedings of the 2010 Workshop on Web 2.0
Security and Privacy (W2SP), 2010.
http://w2spconf.com/2010/papers/p05.pdf.

[22] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung,
N. Sadeh, and D. Wetherall. A conundrum of
permissions: installing applications on an Android
smartphone. In Proceedings of the 16th International
Conference on Financial Cryptography and Data
Security, FC ’12, pages 68–79, Berlin, Heidelberg,
2012. Springer-Verlag.

[23] S. Kim and M. Wogalter. Habituation, dishabituation,
and recovery effects in visual warnings. In Proceedings
of the Human Factors and Ergonomics Society Annual
Meeting, volume 53, pages 1612–1616. SAGE
Publications, 2009.

[24] K. R. Laughery and A. Hammond. Overview. In M. S.
Wogalter, D. M. DeJoy, and K. R. Laughery, editors,
Warnings and Risk Communication, chapter 1, pages
2–11. Taylor and Francis, London, 1999.

[25] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and
W. Lee. The Core of the Matter: Analyzing malicious
traffic in cellular carriers. In Proceedings of the ISOC
Network & Distributed Systems Security Symposium,
NDSS ’13, 2013.

[26] G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos. Paranoid Android: versatile protection for
smartphones. In Proceedings of the 26th Annual
Computer Security Applications Conference, ACSAC
’10, pages 347–356, New York, NY, USA, 2010. ACM.

13

[27] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J.
Wang, and C. Cowan. User-driven access control:
Rethinking permission granting in modern operating
systems. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy, SP ’12, pages 224–238,
Washington, DC, USA, 2012. IEEE Computer Society.

[28] M. Stiegler and M. S. Miller. A capability-base client:
The DarpaBrowser. Technical report, Combex Inc.,
June 2002. http://www.combex.com/papers/
darpa-report/index.html.

[29] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and
L. F. Cranor. Crying wolf: an empirical study of SSL
warning effectiveness. In Proceedings of the 18th
USENIX Security Symposium, SEC ’09, pages
399–416, Berkeley, CA, USA, 2009. USENIX
Association.

[30] T. Vidas, D. Votipka, and N. Christin. All your droid
are belong to us: a survey of current Android attacks.
In Proceedings of the 5th USENIX conference on
Offensive technologies, WOOT ’11, pages 10–10,
Berkeley, CA, USA, 2011. USENIX Association.

[31] H. Xia and J. C. Brustoloni. Hardening web browsers
against man-in-the-middle and eavesdropping attacks.
In Proceedings of the 14th International Conference on
the World Wide Web, WWW ’05, pages 489–498, New
York, NY, USA, 2005. ACM.

[32] K.-P. Yee. User interaction design for secure systems.
In Proceedings of the 4th International Conference on
Information and Communications Security, ICICS ’02,
pages 278–290, London, UK, UK, 2002.
Springer-Verlag.

APPENDIX
A. LAB EXPERIMENT SURVEY

A.1 Implicit Misbehaviors
1. Did any of the apps crash or stop functioning while you

were using them?

• Yes

• No

• I’m not sure

2. Please select the app(s) that crashed or stopped func-
tioning:

• Ovo Timer

• Easy Stop Watch & Timer

• Dice

• PicsArt Kaleidoscope

• Sketch Free 2

• Coloring Princess

• One or more of the widgets

3. How do you know that this/these app(s) crashed or
stopped functioning?

4. Did any of the apps unexpectedly change system set-
tings (e.g., wallpaper, desktop icons, favorites, etc.)?

• Yes

• No

• I’m not sure

5. Please select the app(s) that unexpectedly changed sys-
tem settings (e.g., wallpaper, desktop icons, favorites,
etc.):

• Ovo Timer

• Easy Stop Watch & Timer

• Dice

• PicsArt Kaleidoscope

• Sketch Free 2

• Coloring Princess

• One or more of the widgets

6. How do you know that this/these app(s) were respon-
sible for unexpectedly changing system settings (e.g.,
wallpaper, desktop icons, favorites, etc.)?

7. Which system settings unexpectedly changed?

8. Did any of the apps unexpectedly access phone hard-
ware (e.g., flashlight, camera, vibrate, microphone, etc.)?

• Yes

• No

• I’m not sure

9. Please select the app(s) that unexpectedly accessed phone
hardware (e.g., flashlight, camera, vibrate, microphone,
etc.):

• Ovo Timer

• Easy Stop Watch & Timer

• Dice

• PicsArt Kaleidoscope

• Sketch Free 2

• Coloring Princess

• One or more of the widgets

10. How do you know that this/these app(s) were respon-
sible for unexpectedly accessing phone hardware (e.g.,
flashlight, camera, vibrate, microphone, etc.)?

11. What phone hardware was unexpectedly used?

A.2 Explicit Vibration
1. Which app do you believe is responsible for vibrating

the phone just now?

• Ovo Timer

• Easy Stop Watch & Timer

• Dice

• PicsArt Kaleidoscope

• Sketch Free 2

• Coloring Princess

• One or more of the widgets

2. How did you determine which app made the phone vi-
brate?

3. How confident are you that this was the responsible
app?

• Very confident

• Confident

• Unsure

• Unconfident

• Very unconfident

14

A.3 Explicit Wallpaper Changed

1. Which app do you believe is responsible for changing
the phone’s wallpaper just now?

• Ovo Timer

• Easy Stop Watch & Timer

• Dice

• PicsArt Kaleidoscope

• Sketch Free 2

• Coloring Princess

• One or more of the widgets

2. How did you determine which app changed the wallpa-
per?

3. How confident are you that this was the responsible
app?

• Very confident

• Confident

• Unsure

• Unconfident

• Very unconfident

A.4 Exit Survey

A.4.1 Notification Questions

1. Did you see this icon/notification during the experi-
ment (see Figure 1)?

• Yes

• No

• I’m not sure / I don’t remember

2. What do you believe this icon/notification means?

3. Similar notifications can be used to tell you how apps
are using your phone. Which of the following actions
would you like to see notifications for?

• Vibration

• Change wallpaper

• Quit other apps

• Playing audio

• Change time

• Connect/disconnect Bluetooth

• Bluetooth

• Recording audio

• Recording video

• Taking pictures

• Flashlight

• Set alarm clock

• Modify dictionary

• Change font

• Change ringtone

• Connect/disconnect

• WiFi

• Read device ID

• Send call to voicemail

• Disconnect call

A.4.2 Settings Audit Questions

1. Did you see this information during the experiment (see
Figure 2)?

• Yes

• No

• I’m not sure / I don’t remember

2. The Settings app is sometimes used to show the user
information about the phone, such as which app most
recently modified a setting or used a resource. Would
you like to see information in Settings about which apps
did any of the following:

• Data usage

• Battery usage

• Recently paired via Bluetooth

• Connected/Disconnected WiFi

• Changed volume

• Changed wallpaper

• Storage usage

• Accessed location (GPS)

• Accessed contact list (address book)

• Changed date/time

• Changed font

• Changed ringtone

• Accessed calendar(s)

• Accessed photos

• Read device ID

• Placed calls

• Sent SMS

A.4.3 Demographic Information

1. For each of the following apps that you used in this
experiment, please indicate how familiar you were with
each app prior to this experiment. Options listed in a
table: use daily, have used a few times, have used once,
have never used, but have heard of it, and have never
heard of it.

• Ovo Timer

• Easy Stop Watch & Timer

• Dice

• PicsArt Kaleidoscope

• Sketch Free 2

• Coloring Princess

• One or more of the widgets

2. What is the make/model of your Android device?

3. How long have you owned your current Android device?

• Less than six months

• 6–12 months

• 12–24 months

• Over 24 months

4. What version of Android is installed on your smart-
phone? If you do not know, the experimenter can help
you determine this.

5. In what year were you born?

6. What is your gender?

7. What is your occupation?

15

A.5 Debriefing
In this study, you were asked to write reviews about sev-

eral Android applications. During that process, the pro-
vided smartphone may have started to misbehave by vibrat-
ing and/or changing the desktop wallpaper. The true pur-
pose of the experiment was to see what actions you would
take to determine the cause of this behavior. Some of you
were provided with icons and settings panels that helped at-
tribute these behaviors to particular applications that you
had recently used; our goal was to assess whether or not
you noticed these indicators and whether or not they were
helpful to you. In reality, none of the applications you used
were responsible for these behaviors, and the reviewing task
was subterfuge.

The data that you contributed to this project will help us
to improve the usability of smartphone notifications for all
users.

16

