
Please Continue to Hold

An empirical study on user tolerance of security delays

Serge Egelman
Brown University

egelman@cs.brown.edu

David Molnar
Microsoft Research

dmolnar@microsoft.com

Nicolas Christin
Carnegie Mellon University

nicolasc@andrew.cmu.edu
Alessandro Acquisti

Carnegie Mellon University
acquisti@andrew.cmu.edu

Cormac Herley
Microsoft Research

cormac@microsoft.com

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

ABSTRACT
We present the results of an experiment examining the ex-
tent to which individuals will tolerate delays when told that
such delays are for security purposes. In our experiment, we
asked 400 Amazon Mechanical Turk users to count the total
number of times a certain term was repeated in a multi-
page document. The task was designed to be conducive
to cheating. We assigned subjects to four between-subjects
conditions: one of these offered a concrete security reason
(virus-scanning) for the delay, another offered only a vague
security explanation, another did not mention security at
all, and a control condition without a delay.

We found that subjects were significantly more likely to
cheat or abandon the task when provided no explanation or
a vague security explanation for the delay. However, when
subjects were provided more explanation about the threat
model and the protection ensured by the delay, they were
not more likely to cheat than subjects in the control condi-
tion who faced no such delay. Our results thus contribute
to the nascent literature on soft paternalistic solutions to
security and privacy problems by suggesting that, when se-
curity mitigations cannot be made “free” for users, designers
may incentivize compliant users’ behavior by intentionally
drawing attention to the mitigation itself.

1. INTRODUCTION
The computer security community has proposed various

approaches to thwarting security breaches. Such security
mitigations can be divided into three different categories:
mitigations that are invisible to the user, mitigations that do
something noticeable on the user’s behalf, and mitigations
that suggest the user take a particular action. The latter
category, in particular, can come at a substantial cost for
the user. If this cost is too large, users may choose to forgo
the security mitigation, with detrimental individual and col-
lective effects: negative externalities may be created when
users fall victim to security breaches [13], and revenues for
a firm producing more secure products may be lost if users
choose less burdensome (even though less secure) software.

In this paper we explore the cost of security mitigations
from the perspective of the end user, and how manipulat-
ing – and offering explanations for – those costs may impact
users’ acceptance of security mitigations. We are specifi-
cally interested in quantifying the inconveniences users will
accept in the name of security. Previous work on security
mitigations investigated costs [5,6,8,12,16,21,24,25,32], but

focused on application compatibility and the speed impact
of the mitigation on a set of benchmarks. In contrast, we
attempt to measure what makes costs of mitigations accept-
able to users. We posit that not only should acceptability of
security mitigations be evaluated directly through user stud-
ies, but that non-normative mechanisms should be devised
to increase the acceptability of those mitigations. By “non-
normative,” we refer to mechanisms that do not affect the
technical performance of the security mitigation, but may
influence the way users react to it: for instance, providing
explanations with varying degrees of detail, making certain
types of information more or less salient, or artificially ma-
nipulating speed and delays in the product’s performance.

As a first step in this line of inquiry, we designed an ex-
periment in which we asked subjects to count the number of
times a specific word appeared in a PDF document using a
custom Flash-based viewer. We purposefully designed this
task to be conducive to cheating : the user could submit a re-
sponse without actually reading the entire document. The
rate of cheating with a “mitigation” in place compared to
“no mitigation” then gives us a quantitative measure of the
acceptability of a security mitigation. That is, if it takes
an unacceptable amount of time to complete the task in one
condition, we would expect to see a disproportionate amount
of cheating in that condition.

We controlled for two common user-facing aspects of a se-
curity mitigation: the presence of a delay and the presence of
a notice explaining the reason for the delay. We designed our
study as a four condition between-subjects experiment: one
control condition, with no delay and no notice; one “load-
ing” condition, with a delay but no notice; one condition
with a delay and a vague notice; and one condition that in-
corporated a delay along with a detailed explanation of the
threat model and its mitigation. Based on results from the
behavioral economics and social psychology literature, we
hypothesized that subjects would be more tolerant of the
delay when told that the delay was for security purposes,
and when primed with more detailed explanations of the
threat model and its mitigation. Thus, we expected to see
a disproportionate amount of cheating in the condition with
the delay and no notice.

We conducted our experiment with 400 subjects recruited
from Amazon’s Mechanical Turk. Mechanical Turk is a ser-
vice for advertising “tasks” that can be completed by human
workers for a set price per task. We found that subjects
were significantly more likely to cheat or abandon the task

when provided no explanation or a vague security expla-
nation for the delay. However, when subjects were provided
more explanation about the threat model and the protection
ensured by the delay, they were not more likely to cheat than
subjects in the control condition who faced no such delay.

Our findings suggest that if a delay is necessary due to
a security mitigation, then the mitigation may be more ac-
ceptable to users if they are told of the threat model and
how the mitigation protects them. This advice may sound
counterintuitive, given that most security mitigations inten-
tionally do not make themselves visible to the user unless
an attack occurs, and perhaps not even then. For exam-
ple, Windows programs do not usually employ pop-ups to
inform users that address space randomization is being used
or that stack canaries are being inserted. On the other hand,
many anti-virus programs do explicitly warn the user when
a scan is in progress, which may incur significant delays to
user operations. There is therefore a tension between se-
curity which is “invisible,” and measures made explicit “for
security reasons.” In this paper, we attempt to better char-
acterize these tensions by providing empirical evidence. Our
work shows that user studies of security mitigations shed im-
portant light on the acceptability of mitigations in contexts
not well served by previous approaches. In this regard, our
results contribute to the nascent literature on soft paternal-
istic solutions to security and privacy problems.

Our approach side-steps the question of “is X% overhead
on this benchmark a lot or a little?” by placing the user-
facing aspects of the mitigation directly in the context in
which they are experienced by users. Because the techni-
cal aspects of the actual mitigation can be abstracted away,
these types of user studies can be generalized to yield ac-
tionable findings for multiple types of security mitigations.
Therefore, we believe user studies are an important addition
to traditional benchmarking and application compatibility
analysis for evaluating security mitigations. Our experience
with Mechanical Turk shows that these studies can be car-
ried out at modest cost even with hundreds of users. We
hope this will encourage others to perform such studies as
part of the process for evaluating future security mitigations.

2. BACKGROUND
Our work responds to and is informed by traditions from

computer security, behavioral economics, human-computer
interaction/computer-supported collaborative work, and psy-
chology. We now discuss background from each of these
communities in detail.

Computer Security. Security mitigations are features
of an application or operating system that make it more dif-
ficult for an adversary to take control of a victim’s computer,
even when the victim’s software has a bug such as a buffer
overflow. The value of a security mitigation is that it trades
speed and application compatibility for increased attack dif-
ficulty, without requiring the defender to have detailed, spe-
cific knowledge of the attack in advance. This tradeoff is
attractive because finding all bugs in computer software or
enumerating specific attacks ahead of time is incredibly dif-
ficult.

The computer security community has a long list of pro-
posed mitigations stretching over more than fifteen years.
Classic examples include stack canaries [6,12], address space
layout randomization [24], automatic bounds checking [5,
16], and non-executable memory [21,24]. More recent exam-

ples include software changes such as Nozzle [25], or efficient
software fault isolation for x86 and x64 architectures [20,32],
and hardware changes such as those found in Raksha [8] or
SmashGuard [23]. Anti-virus software can also be viewed
in this category, and it has been undeniably successful com-
mercially.

In the evaluation section of every proposal of which we
are aware, the cost of a mitigation is evaluated along two
axes: the loss in speed on benchmarks and the impact on
application compatibility. Application compatibility is an
important consideration, but one which we do not address
in this work. Another increasingly important phenomenon
is that adversaries can develop reliable methods for bypass-
ing mitigations [10]; once such bypasses are found, users pay
the cost of the mitigation but receive no benefit against so-
phisticated adversaries.

Even so, a major part of discussions on adoption from the
earliest mitigations to the present centers on whether a spe-
cific speed impact is “too much,” as measured on a set of
benchmarks. The key problem we address is that measuring
speed on benchmarks is merely a proxy for measuring user
acceptance of a mitigation. Clearly, if there is no speed im-
pact from adopting a mitigation, the experience of the user
with the mitigation is indistinguishable from the original
experience in the common case where no attack is present.
Therefore the mitigation will be acceptable.

Unfortunately, in most cases security mitigations cannot
be made “free.” The computer security community has then
historically proceeded to the difficult question: “is the speed
impact of the mitigation on these benchmarks acceptable?”
Complicating the question is the fact that“acceptance”means
different things in different scenarios. For example, an ad-
ditional 50 milliseconds to load a web page may lead to a
significant loss in revenue for a web site. An additional hour
added to a batch job, which normally takes a year, may not
be noticed.

Behavioral Economics, Usability, and Soft Pater-
nalism. Our contribution can be related to the nascent
literature on the application of soft paternalistic approaches
[19,30] to privacy [2,31] and security [4] problems. In recent
years, there has been growing interest in understanding the
psychological motives, as well as the possible cognitive and
behavioral biases, that affect privacy [1] and security [27] de-
cision making. In parallel, the computer science community
has started investigating how to make privacy and security
systems more usable [7]. These streams of research converge
when lessons derived from the behavioral economics, deci-
sion research, or psychological literatures are incorporated
into the design of systems that take into account system-
atic biases that affect our decision making in information
security. These approaches do not merely aim at making
systems more usable, but to actually anticipate known and
costly biases – and sometimes even exploit those biases in
manners that nudge users towards certain choices, without
limiting their freedom [19, 30]: from providing salient infor-
mation [31] to creating interactive audited dialogs [4] with
the end users.

Psychology. Milgram explored the role of obedience to
authority in his seminal 1963 experiment. He concluded
that people are generally compliant with requests—however
bizarre or nonsensical—when those requests come from peo-
ple in positions of authority [22]. While work on obedience to
computer security mitigations has some parallels, our work

Figure 1: Screenshots of the SuperViewer interface.
Subjects were able to change pages using the arrow
buttons. The above image shows the loading screen
that all subjects saw when first launching Super-
Viewer; subjects in the control condition never saw
this screen again, while those in the experimental
conditions repeatedly saw it on every page. The
page number indicator was subsequently removed
after our pilot studies.

differs in that our requests did not come from a human being
in a position of authority. Our experiment tests a hypoth-
esis related, in part, to the results of a famous experiment
by Langer, Blank, and Chanowitz [18]. In their series of
experiments, they showed that even “placebic” information
provided in the form of explanation, or reason for a request,
was sufficient to generate compliance with a request, even
though the reason itself conveyed no actual information. In
our experiments, we tested whether providing an explana-
tion for the security delays in loading pages would, in fact,
increase the likelihood that subjects would comply with the
security mitigation.

3. METHODOLOGY
We conducted an experiment using Mechanical Turk to

examine whether people would put up with an inconvenience
if they were told it was for security purposes. Researchers

have recently begun using Mechanical Turk as a way to
quickly perform large-scale human subjects experiments for
very little cost [17]. In 2009, Ross et al. performed a series of
surveys using Mechanical Turk and concluded that the de-
mographics do not significantly differ from the population
of U.S. Internet users [26]. In 2009, Jakobsson performed
an experiment to study the quality of work produced by
Mechanical Turk users. He commissioned a survey using
Mechanical Turk as well as an identical one using an “estab-
lished, independent survey company” and found no signifi-
cant differences between the two participant pools [15].

We created a task wherein we told study subjects that
they were beta testing a new web-based document viewer,
SuperViewer (Figure 1). When first launching SuperViewer,
all subjects saw a progress bar that took ten seconds to load
before displaying the first page of the document. Those in
the control condition never saw this progress bar again, while
those in the three experimental conditions repeatedly saw
this progress bar each time they viewed a new page of the
document (i.e., they had to wait ten seconds each time they
turned to a new page). The three experimental conditions
differed based on the text used to explain the reason for the
progress bar.

For the task itself, we asked subjects to read a document
using SuperViewer. We told subjects that to receive pay-
ment, they must report the frequency that a particular word
occurred in that document. Thus, they would have to read
the entire document in order to accurately answer the ques-
tion. SuperViewer features a very basic interface: two but-
tons for navigating forward and backward in the document,
which forced subjects to view the document pages in order.
Likewise, there was no“search”functionality, otherwise com-
pleting the task would have been trivial. One goal of this
task was to make it appear indistinguishable from other non-
research Mechanical Turk tasks (e.g., product categoriza-
tion, image labeling, etc.). Thus, if subjects did not believe
they were engaged in a research study for the public good,
they may have been more inclined to “cheat.” We defined
cheating as submitting a response to receive credit without
using SuperViewer to read the entire document (e.g., read-
ing part or none of the document). Our main interest was
to examine whether subjects’ cheating varied based on the
four between-group conditions we created:

• Control — SuperViewer was launched when subjects
clicked a button. Immediately after launching, a progress
bar was displayed for ten seconds with the label,“Load-
ing.” After this ten second period, the first page of the
document was displayed. Subjects could change pages
in the document by clicking one of two arrow buttons.
Thus, subjects were forced to view pages in order.

• Loading — This condition was identical to the con-
trol condition, with one exception: when advancing
to a subsequent page after the first, an additional ten
second progress bar—also labeled “loading”—was dis-
played before subjects were allowed to view the next
page. Subjects only saw these progress bars once for
each new page; subjects would not see a progress bar
again when flipping to a previously viewed page. The
purpose of this condition was to examine whether study
subjects would tolerate an unknown delay or whether
they would cheat by quitting the task early and re-
porting an incorrect word frequency.

Figure 2: Screenshot of the instructions subjects saw
before launching SuperViewer. The image above
was seen by those in the control, loading, and secu-
rity conditions. The image below was seen by those
in the primed condition.

• Security — This condition was identical to the load-
ing condition, with one exception: the label on the
progress bar was changed from “Loading” to “Perform-
ing security scan.” The purpose of this condition was
to examine whether study subjects would tolerate a
delay when they were told it was for security purposes
or if they would cheat by quitting the task early and
reporting an incorrect word frequency.

• Primed — This condition was identical to the secu-
rity condition, with one exception: prior to launching
SuperViewer, subjects were informed of the danger of
viruses embedded in online documents and that Super-
Viewer scans documents for their protection. The pur-
pose of this condition was to examine whether subjects
were any less likely to cheat if they understood why
the “security scan” was being performed, or if simply
performing an ambiguous security function was reason
enough (as was the case in the security condition).

Prior to launching the SuperViewer applet, subjects were
shown a page of information about the software (Figure 2).
The main purpose of this page was to prime those in the
primed condition to security concerns and to convince them
that the software was protecting them against a legitimate
threat model. In order to balance all of the conditions in
terms of total workload required of our subjects—the total
amount of text to read—we added a placebo text page for
those in the other three conditions.

In order to determine whether our subjects cheated dur-
ing the experiment, we recorded the number of unique doc-
ument pages they viewed, the total number of pages viewed,

the time it took them between opening the document and
submitting their response, and the numerical response that
they submitted.

Upon completing the initial experiment, we invited sub-
jects to complete a survey based on their experiences using
SuperViewer in exchange for a bonus payment. The first
page of the survey asked subjects about their overall opin-
ions of SuperViewer and the factors that influenced those
opinions: color, look and feel, ease of use, speed, and secu-
rity features, each rated using a 5-point Likert scale. The
second page of the survey contained questions about sub-
jects’ risk perceptions, both when they used SuperViewer
during the experiment, as well as when performing other
activities on their computers (e.g., browsing the web, read-
ing email, downloading files, etc.). The third page of the
survey contained questions about what anti-virus software
the subjects currently used, as well as the types of threats
they believed said software guarded against. Finally, the
fourth page of the survey featured demographic questions.

3.1 Pilot Studies
We decided to pilot our experiment using five pages from

Alice in Wonderland as the document, and we used a version
of SuperViewer written in Java. We offered to pay each
participant $0.05 to complete the task and we targeted 100
subjects, who were randomly assigned to the four conditions.
Overall, we were underwhelmed at the rate of response to
this task; it took us fifteen days to recruit 100 subjects. We
decided that we needed to pay our subjects more, and so we
created another 100 tasks, but this time paying $0.11 per
participant. This time it took us only six days to recruit
100 subjects.

While we had decided that we must pay subjects at least
$0.11 to complete this experiment in a timely manner, we
discovered another potential caveat: several subjects had
emailed us indicating that they could not load the viewer.
In fact, while 200 people completed these pilot experiments,
355 others attempted to complete the task but were un-
successful. Given that almost two thirds were unable to
complete the task, we assumed that this was due to Java
incompatibilities. Thus, we decided to rewrite SuperViewer
in Flash.

We created a third pilot study to evaluate our Flash imple-
mentation. We recruited another 100 subjects and decided
to pay them $0.05, since we reasoned that with fewer techni-
cal incompatibilities from using Flash, we may receive an ad-
equate participation rate with our original payment amount.
Indeed, instead of taking fifteen days, using Flash allowed us
to gather data from 100 subjects in just eight days. During
the task itself, we asked subjects how many times the word
“Hatter”occurred in the text, the correct answer being eight.
Of our 100 subjects, only two clearly cheated, and each was
in a different condition. We concluded that the task was too
easy to perform, and therefore it would require an inordinate
number of total subjects to get enough cheaters. Thus, we
needed to make the task both longer and more frustrating;
we changed the text from five pages of Alice in Wonderland
to ten pages of Ulysses. The tenth page of the document
only filled half a page, though we added a blank 11th page
to indicate the end of the document. Because of this, we
considered anyone who reached either page ten or eleven to
have viewed the entire document.

Condition N Total Time (s) Time Per Page (s) Unique Pages Total Pages Cheaters

Control 119 458 50.9 9.93 19.76 15 (12.6%)
Loading 91 491 56.6 9.11 13.94 24 (26.4%)
Security 87 547 63.5 9.33 13.43 25 (28.7%)
Primed 103 546 56.9 10.01 15.10 18 (17.5%)

Table 1: Overview of our experimental data. This table shows the number of subjects in each of the four
randomly-assigned conditions, the average time spent performing the task, the average reading time per page,
the average number of unique pages viewed (out of a maximum of 11), the average number of total pages
viewed, and finally the number of people who cheated by not reading the entire document before submitting
a response.

The pilot versions of SuperViewer all displayed the current
page number and the total number of pages in the document
(Figure 1). By removing this status indicator, we reasoned
that subjects will become more frustrated when they have
no indication of when the task will end, and therefore, the
observed effect size would be greater. Finally, we increased
the payment to $0.11 again, since we expected many more
subjects to abandon the task without submitting any data,
and therefore we needed a larger population.

4. ANALYSIS
A total of 400 Mechanical Turk users participated in our

experiment between February 1st and 18th, 2010. These
subjects were randomly assigned to the four conditions out-
lined in the previous section, with the total number of sub-
jects in each condition presented in Table 1. As can be seen
from the table, we observed several significant differences be-
tween the conditions. In this section we analyze these differ-
ences, both in terms of the number of people who cheated, as
well as subjects’ task performance. Finally, we incorporate
the data gleaned from our exit survey in order to support
our conclusions.

4.1 Cheating
Subjects were required to read ten pages of Ulysses in or-

der to answer the question, “how many times did the word
said appear?” The correct answer was 23. We considered it
cheating if a participant submitted an answer to this ques-
tion without reading the entire ten pages. We hypothesized
that subjects who had to wait for the progress bars to load
before viewing subsequent pages would be significantly more
likely to cheat than those in the control condition. We fur-
ther hypothesized that subjects who were told that this de-
lay was for “security purposes” would be less likely to cheat
than those who were not given an explanation for the delay
(i.e., those in the loading condition). Finally, we hypoth-
esized that subjects who were given details of the threat
model and the mitigation (i.e., the primed condition) would
be just as likely to cheat as those who did not receive this
information (i.e., the security condition).

Overall, we found that our hypotheses were partially cor-
roborated: subjects in the control and primed conditions
were significantly less likely to cheat than those in the load-
ing and security conditions (χ2

3 = 10.676, p < 0.014). This
indicates that subjects were more likely to cheat when they
had to wait, except when they were told exactly why they
had to wait; the label on the progress bar made no observ-
able difference, except when subjects were informed of the
danger of PDF viruses and that they were being protected
by our software.

Condition N 0 Pages 1-9 Pages 10-11 Pages

Control 119 3 (2.5%) 12 (10.1%) 104 (87.4%)
Loading 91 4 (4.4%) 20 (22.0%) 67 (73.6%)
Security 87 8 (9.2%) 17 (19.5%) 62 (71.3%)
Primed 103 6 (5.8%) 12 (11.7%) 85 (82.5%)

Table 2: The number of subjects in each condition
who read none of the document, some of the doc-
ument, or all of the document before submitting a
response. We considered subjects in the first two
categories to have cheated. Recall that we consid-
ered those who reached either page ten or eleven as
completing the document, since the tenth page was
half empty, while the eleventh page explicitly stated
it was the end of the document.

We further hypothesized that we would observe two types
of cheating: subjects who submit answers before viewing
any of the document and subjects who submit answers be-
fore reaching the last page (but after opening the document).
The former type of cheating happens before subjects expe-
rience any types of delays, and therefore should be equally
distributed across all of the conditions. Indeed that was the
case: a chi-square test indicated no significant differences
between the groups with regard to subjects who submitted
an answer without ever viewing the document. We therefore
decided to remove these subjects from the rest of our anal-
ysis, since they did not provide us with any data relevant
to our hypotheses. Our results are robust to the point of
yielding significance even with these subjects.

We examined the second type of cheating, subjects who
submitted answers after only partially reading the docu-
ment, and found significant differences between the condi-
tions (χ2

3 = 8.619, p < 0.035). Furthermore, we believe that
this effect was diminished by the ability to “return” a Me-
chanical Turk task without receiving credit. Subjects who
did not wish to complete the task—but who also did not
wish to cheat by entering an arbitrary answer without read-
ing the entire document—had the ability to return the task.
While there was not a significant difference between the
number of subjects assigned to each condition (χ2

3 = 6.200,
p < 0.102), the data in Table 2 shows a disproportionate
number of subjects assigned to the control and primed con-
ditions. Unfortunately, we did not record data from the 55
subjects who returned the task, and therefore we cannot ver-
ify whether more subjects were assigned to these conditions
and returned them, or if these disproportionate frequencies
are due to the random number generator.

Condition N Speed Speed Security
Rating Concerns Concerns

Control 63 4.38 6 (9.5%) 4 (6.3%)
Loading 40 3.53 13 (32.5%) 5 (12.5%)
Security 38 3.71 10 (26.3%) 5 (13.2%)
Primed 46 3.65 12 (26.1%) 14 (30.4%)

Table 3: The differences in survey responses with
regards to perceptions of speed and security dur-
ing the experiment. The columns show the num-
ber of respondents in each experimental condition,
their average response using a 5-point Likert scale
to rate the speed of SuperViewer, and the number
of respondents in each condition who explicitly men-
tioned performance or security concerns.

4.2 Task Performance
We examined the accuracy of subjects’ responses, as well

as the amount of time they spent performing the task to
determine if there were any differences in their performance
based on the conditions. We first examined the accuracy of
subjects’ answers, and found no significant differences be-
tween the four conditions. However, we did observe that
in every condition, cheaters reported significantly different
results from those who read the entire document (control:
t114 = 9.641, p < 0.0005; loading: t85 = 10.989, p < 0.0005;
security: t77 = 10.029, p < 0.0005; primed: t95 = 11.516,
p < 0.0005). Likewise, we observed that the distance of
subjects’ answers from the correct answer was inversely cor-
related with the number of unique pages they visited (r =
−0.775, p < 0.0005). That is, the more pages the subjects
read, the closer their answers were to the correct answer.

We found no significant differences between the exper-
imental conditions when we examined how long subjects
spent reading each page. Across all conditions, those who
cheated spent significantly less time on the task: t377 =
6.089, p < 0.0005. However, we did notice significant differ-
ences based on experimental condition when we examined
how many pages subjects viewed. Table 1 depicts the aver-
age number of unique pages each participant viewed, as well
as the average number of total pages (i.e., counting the same
page multiple times if a participant revisited that page).

When we examined the total number of pages subjects
visited on average, we found that those in the control con-
dition revisited significantly more pages than those in the
other conditions (F3,375 = 3.580, p < 0.014). Upon per-
forming post-hoc analysis using Tukey’s adjustment for mul-
tiple testing, we found that those in the control condition
viewed significantly more pages than those in the loading
(p < 0.043) and security (p < 0.029) conditions. We were
particularly surprised to not find a significant contrast be-
tween the control and primed conditions when it came to
total pages viewed. Subjects were tolerant of a security de-
lay when they were given a plausible explanation for it, to
the point that they were more likely to review their work
than subjects in the other two experimental conditions.

4.3 Exit Survey
After subjects completed the experimental portion of this

study, we sent them an email offering them an additional
$0.50 in exchange for completing a survey on their opinions
of SuperViewer. We received a total of 193 valid responses.

After filtering out subjects who cheated by submitting an
answer without ever opening the document, we were left
with 187 responses. These respondents claimed to be 125
men and 62 women, with 81% of our respondents holding a
college degree or higher. It should be noted that all demo-
graphic data was self-reported and unverified, and therefore
it may not representative of reality. Likewise, survey respon-
dents were self-selected from our population of experimental
subjects, and therefore may not be representative of the en-
tire population. However, the proportion of cheaters who
responded to our survey did not differ significantly from the
proportion of cheaters who participated in our experiment.
Of these 187 respondents, 27 of them (14.4%) cheated during
the experiment by submitting a response after only partially
reading the document.

On the first page of our survey, we asked respondents to
report their overall impressions of SuperViewer using a 5-
point Likert scale. We also asked respondents to rate sev-
eral factors that contributed to this impression: ease of use,
color, look and feel, speed, and security features. When we
compared the four different conditions using an ANOVA, we
observed a significant difference when it came to perceptions
of speed (F3,183 = 8.110, p < 0.001). Upon performing post-
hoc analysis using Tukey’s adjustment for multiple testing,
we found that people in the control condition rated speed sig-
nificantly higher than those in the loading (p < 0.003), secu-
rity (p < 0.036), and primed (p < 0.011) conditions. These
findings were expected, since those in the control condition
were not subjected to additional waiting times. The aver-
age ratings are displayed in Table 3. Despite the differences
in speed, we noticed no difference between the conditions
regarding the impact of security features on respondents’
overall opinions of SuperViewer. Over 50% of respondents
said that“ease of use”was the primary factor that influenced
their overall opinion of SuperViewer, which was consistent
across the four conditions.

When we asked subjects what they disliked most about
SuperViewer, 40 of them (21.4%) said something about per-
formance or the time it took to load each page:

• It was very slow.

• Pages a little slow to load.

• Loading a page with “security features” took an obscene
amount of time.

• The loading time of the security features.

We performed a chi-square test to examine whether a dis-
like for the speed was predominant in any of the experi-
mental conditions. Significantly fewer people in the control
condition reported speed as being the source of their dislike
(χ2

3 = 9.167, p < 0.027). Thus, it is likely that this effect was
in response to the presence of the progress bars in all three
experimental conditions. The breakdown of these responses
are displayed in Table 3.

We asked subjects whether they felt there was a dan-
ger viewing the document with SuperViewer and to rate
that danger using a 5-point Likert scale. We noticed that
28 of the respondents (15%) said that they had no idea
and therefore could not rate the danger. We therefore re-
moved these respondents when we analyzed this question.
We observed significant differences between the experimen-
tal conditions with regard to subjects’ perceived dangers

(F3,155 = 8.636, p < 0.034). Upon performing post-hoc
analysis using Tukey’s adjustment for multiple testing, we
found that this difference was due to respondents in the
primed condition rating the danger significantly higher than
respondents in the control condition (p < 0.023). As a
follow-up question, we asked respondents to describe any
concerns that they had during the experiment. A total of
nine subjects in the control and loading conditions men-
tioned security concerns, despite the fact that they were
not primed to security during the experiment itself, while a
total of nineteen subjects in the security and primed condi-
tions also mentioned specific security concerns (χ2

3 = 12.608,
p < 0.006). Using Fisher’s exact test along with the Bonfer-
roni correction to account for multiple testing, we discovered
that significantly more people in the primed condition men-
tioned security concerns than those in the control condition
(p < 0.0013). Some of these concerns included:

• Security is my major concern here. Is it really safe to
view PDF?

• Wasn’t sure if it contained a virus.

• I was a bit concerned when it ran a (sort of) virus scan
before displaying the text.

• What if there is a virus attached to the PDF file?

5. DISCUSSION
Our experimental findings were slightly different than what

we expected. In the physical world, people must undergo
various security mitigations of questionable effectiveness, all
the while remaining fairly complaisant. Schneier has writ-
ten at length about “security theater,” security measures
that have no security value other than demonstrating to the
public that something is being done [28]. Photo identifi-
cation is checked at office buildings to compare visitors to
non-existent watch lists, liquids are banned from airplanes
despite evidence that attacks using liquid explosives are im-
practical, and soldiers with unloaded weapons are placed in
prominent public places. Yet the public in general is fairly
tolerant of these ineffective security measures, even though
they are inconvenient both in terms of time and cost. While
the TSA arguably causes more visible inconvenience and de-
lay than most U.S. government agencies, elected representa-
tives do not receive enough constituent complaints for them
to actually change policy. In fact, it is likely that investment
in technologies such as full body scanners is done mainly to
ease perceptions of security, rather than to increase actual
security [3]. This lead us to hypothesize that humans may
be tolerant of these inconveniences at the mere mention of
“security,” whether rational or not.

In this section we explore how our hypotheses compared
with the data we collected. We discuss several possible ex-
planations for participants’ behaviors and explain the greater
applications for research in this area. Finally, we discuss
some of this study’s shortcomings and outline future work
in this area.

5.1 Explanations
Our motivation for the contrast between the security and

primed conditions was to examine the role of bounded ra-
tionality when people tolerate the security delays. Those in
the security condition had no rational reason to tolerate the

delay, since no explanation was given other than the am-
biguous “security scan” label on the progress bar. Whereas
those in the primed condition were given a plausible explana-
tion for the security scan. If no significant differences were
detected, we hypothesized that bounded rationality would
be the case: participants would not need to understand the
security explanation to comply. Based on the parallels be-
tween our experiment and previous work on soft paternalism
and bounded rationality, we did not expect to observe a sta-
tistically significant difference in behaviors between these
two conditions. We were surprised that this was not the
case.

Taken at face value, our results indicate that when given
a valid explanation for a security delay, people will tolerate
it. While at the same time, without a plausible explanation,
people will not tolerate the same delay regardless of whether
they are told it is for “security purposes.” We believe there
are several possible explanations for why these results di-
verge from observed behaviors in the physical world.

5.1.1 Habituation
Computer security concerns have grown to prominence

in recent years, to the point that even casual users must
interact with security mitigations. Users are told to keep
antivirus software up to date, to visit only secure websites
denoted by a lock icon, and to think critically about what
software they install. Yet from users’ perspectives, they see a
large quantity of computer security mitigations, but a fairly
low attack rate. This calls into question whether these mit-
igations are worth the cost to users [14]. In the case of SSL
warnings, one of the most noticeable user-facing computer
security mitigations, the false positives far outnumber the
actual positives. Users become habituated to ignoring secu-
rity warnings because the warnings either do not explain the
risks or threat model, or they use jargon such that users do
not comprehend them [11, 29]. Thus, users become habit-
uated to many computer security mitigations because they
see them so frequently and rarely associate them with con-
sequences.

Due to habituation, users ignore security mitigations when
they do not understand the risk. This may explain the lack
of differences in behavior when comparing the loading and
security conditions. When users were forced to wait for an
arbitrary security check that they did not understand, they
did not believe they were in any danger. In the exit sur-
vey, 30% of the participants in the primed condition men-
tioned security concerns, almost three times as many as in
the security condition. Whereas those who mentioned se-
curity concerns in the loading and security conditions were
roughly equal. Thus, it is possible that without highlighting
a specific threat, users are habituated to computer security
messaging. This differs from risk perceptions in the physical
world because people can better conceptualize the types of
threats without having to have them explicitly stated (i.e.,
hijacking, bombing, etc.).

5.1.2 Quid Pro Quo
Another possible explanation for the lack of cheating among

participants in the primed condition is that they felt more
obliged to complete the task than participants in the three
other conditions. Since these participants were told about
the threat model and how our software was protecting them,
they may have felt like they owed us something in return,

since we were performing a service on their behalf. We ob-
served that participants in the three experimental condi-
tions all ranked the speed of the program as significantly
worse than those in the control condition. Obviously this
corresponds with seeing the progress bar before viewing each
page. However, participants in the primed condition, while
just as annoyed as those in the other two conditions, were
more likely to read through to the end of the document. In
fact, these participants were twice as likely to revisit pages
in order to review their work. Thus, they expended more
effort than those in the two other experimental conditions.

5.1.3 Fear
We believe it is possible that participants who were se-

curity primed may have inferred that we are security re-
searchers and therefore thought we may be more likely to
detect them cheating. Thus, participants in the loading and
security conditions were more likely to cheat because they
were less likely to believe they would be caught. While this
is a valid explanation, we believe it is improbable. Previous
work conducted on security warnings has found that users
are more compliant when they understand the risks of ignor-
ing the warnings [11]. Participants in the primed condition
were significantly more likely to believe they were being pro-
tected from a plausible risk; it is more likely that this sense
of risk is what motivated them to comply with the security
messaging by continuing to wait. This explanation also does
not explain why participants in the primed condition were
likely to review their work; if they did not cheat simply for
fear of being caught, it is likely that they would have done
the bare minimum necessary to complete the task.

5.1.4 Sunk Costs
In Section 4, when we observed no significant differences

with regard to the amount of time taken, we adjusted par-
ticipants’ completion times to account for the amount of
time they had to wait in each condition. That is, we were
measuring the amount of time participants spent reading
the documents, which did not include the amount of time
they spent waiting. We did this because the waiting time
was artificially created by us. However, when we factor this
waiting time back into each condition, we found significant
differences (F3,375 = 3.751, p < 0.011). Those in the secu-
rity and primed conditions spent significantly more time in
total than those in the control condition.

This does not explain why those in the security condi-
tion were significantly more likely to cheat than those in the
primed condition. However, it may explain why those in the
primed condition did not cheat any more than those in the
control: participants in the former condition had invested
almost 40% more time to complete the task! Thus, the sunk
time cost may have dissuaded them from abandoning the
task.

5.2 Applications
The study presented in this paper and its results have

several immediate applications, both for computer security
and public policy.

5.2.1 Security Messaging in Software Systems
Previous work [29] has shown the importance of security

warnings in software systems in leading people to adopt se-
cure behavior. The present study shows that, in addition to

making systems more secure, good advance warning systems
that clearly explain the rationale for a design choice, also
render the system considerably more psychologically accept-
able, and make people more likely to tolerate the security
choices made for them “under the hood” when these come
at a cost.

5.2.2 Alpha Testing Security Features
Security features are best tested by a large number of

users, as the multiplication of different use cases across a
varied user pool can uncover a number of vulnerabilities that
would be harder to observe with a limited amount of test-
ing. The novel contribution of our study is to show that al-
pha testing (similar to pilot studies in a usability context) is
also of utmost importance to gauge the psychological accept-
ability of security mitigation mechanisms. Performing these
types of studies is also extremely cost effective: between our
pilots, the experiment, the bonus survey payments, and the
fees to Amazon, this study cost under $200 (beyond the re-
searchers’ time). In this manner, scientific results can be
used to guide engineering decisions.

As a case in point, consider the relatively complex set of
warnings that have to be bypassed to accept a self-signed
certificate in Firefox 3. The original beta versions of Fire-
fox 3 contained a 11-step bypass mechanism, which, while
marginally increasing security, also utterly annoyed users.
Eventually, the bypass mechanism was reduced to a more
manageable 4-step process, which is still perceived as too
lengthy and impractical given the number of self-signed cer-
tificates in circulation [29]. Alpha testing could have helped
to spot the problem before Firefox 3 was beta-released, which
would have avoided public embarrassment, while leading the
Firefox developers to focus on designing a better SSL warn-
ing system.

5.2.3 Scareware Defenses
An unfortunate consequence of the results we have ob-

tained is that scareware – the tactic of coercing victims into
installing fake anti-viruses, or anti-spyware mechanisms that
in fact contain attack code – appears like a very viable strat-
egy for malicious entities. While this result is not surprising,
our current work helps quantify the strength of the psy-
chological bias we have to combat when devising defenses
against scareware. The more convincing the messaging cho-
sen by the attacker, the more likely the user is to tolerate
“odd” behavior from the software installed, so long as the
user believes that the behavior is the cost of being protected
from a potential risk. Figuring out how to counter this bias
opens a whole new avenue of research.

5.2.4 Public Policy Applications
Beyond the software realm, the study seems to confirm

that, by calling on people’s fears, one may improve the psy-
chological acceptability of any action typically considered as
annoying. This shows why Schneier’s “security theater” [28]
may actually indirectly contribute to security, albeit in a dif-
ferent realm than what it is supposed to originally protect.
While the security measures deployed in airports may be
very ineffective against people managing to smuggle danger-
ous materials onboard an airplane, they help pacify the vast
majority of the population that has to stand in line, often
times in uncomfortable positions. In other words, these secu-
rity measures, however questionable they may be in terms of

actual protection provided, are likely effective at performing
crowd control, which in turn improves the overall security
of the environment. More generally, our results corrobo-
rate Langer et al.’s results showing that people tend to be
compliant with requests when given a rationale, rational or
not [18].

5.3 Caveats
During this experiment we found that when participants

were provided with a detailed security explanation for the
delay, they were significantly more tolerant of the delay than
participants who did not see a detailed explanation. This
in and of itself does not prove that participants were more
tolerant because we displayed a security explanation. It
merely shows that without a plausible explanation, partici-
pants were less likely to tolerate the delay. It is possible that
providing a different detailed explanation unrelated to secu-
rity may have yielded a similar effect. However, this does
indicate that when software developers include security mit-
igations with associated time costs, users will be more toler-
ant if they are given a plausible explanation for these time
costs.

We collected data from a total of 400 participants in our
experiment. Of these, a total of 82 cheated by submit-
ting a response without reaching the end of our document.
Twenty-one of these cheaters submitted responses without
ever reaching the first page of the document. Upon look-
ing at our web server logs, we discovered that 55 additional
participants had begun our task but chose not to submit a
response, meaning that a total of 455 people accepted our
task. Unfortunately, we cannot determine the conditions
to which these 55 were assigned. We do know that all 455
were randomly assigned between the four different condi-
tions. However, it is possible that participants in one of
these conditions was more likely to return the task incom-
plete than participants in other conditions. But given that
there were no significant differences regarding how the re-
maining 400 participants were split between the four groups,
we find this explanation unlikely. At the same time, given
the lopsided demographic data that we gathered from the
exit survey, it is likely that some self-selection bias impacted
our study.

We therefore can only speculate about the reasons for ac-
cepting the task and not submitting a response. Of the 55,
ten participants never even launched SuperViewer. An addi-
tional six requested the SuperViewer Flash object, but never
viewed the first page of the document. This may be due to
Flash incompatibilities or it could be that participants were
annoyed by the initial progress bar and closed it before the
first page could be displayed. Of the 45 who loaded Super-
Viewer, the median number of unique pages viewed was four.
Six of these participants viewed every page of the document,
which begs the question of why they did not submit a re-
sponse (maybe they forgot?). Without collecting additional
data, we cannot know how much the delay or security con-
cerns impacted the decision of these participants to abandon
the task.

Finally, there may be concerns about the full effect of
the priming on subjects in the primed condition. It can
be argued that we divided participants into two groups at
the beginning of the experiment: security-primed and not
security-primed. The other conditions could then be inter-
preted as subgroups of the latter group. Thus, the effect of

the priming information cannot be separated from the effect
of the progress bar. This will need to be addressed in future
work to determine the effect of the security priming by itself.

5.4 Future Work
In this paper we highlighted some interesting initial find-

ings with regard to users’ tolerance of security delays. We
believe that studies in this area are a crucial missing step
in the software development process as well as in the com-
puter security community as whole. A security mitigation
may solve a specific security problem, but if users are un-
willing to accept the time cost associated with it, it has not
solved the problem. However, our study was not without
its caveats. We have several future experiments planned to
refine our results and to pursue new questions in this area.

5.4.1 Controlling Security Priming
As an immediate follow-up experiment, we expect to re-

peat this experiment using two new conditions. In the first
condition, participants will see the tutorial page from the
primed condition. However, all the progress bars will be la-
belled as something unrelated to security (e.g., “rendering
fonts,” “performing spellcheck,” etc.). In this manner, we
will be able to control for the effect of the security tutorial
at the beginning of the experiment. In the second new con-
dition, the tutorial will be changed to highlight the new fea-
tures that are supposedly causing the security delay. Thus,
we will be able to determine whether participants were less
likely to cheat because of a plausible security explanation,
or if any plausible explanation will suffice.

5.4.2 Determining Maximum Tolerance
In this experiment we showed that those in the primed

condition were no more likely to cheat than those in the
control condition. However, differences may still exist with
regard to how much of a delay participants will tolerate. We
have several experiments planned to examine these upper
bounds. In one experiment, we expect to randomly vary
the amount of time it takes for the pages to load (though
remaining constant on a per-participant basis). This will
allow us to use a regression to calculate the upper limit of
how long participants are willing to wait in each condition.

In another experiment, we expect to increase the number
of pages in the document by several orders of magnitude.
By making the document unbearably long, everyone will be
forced to abandon the task at some point. We will measure
the point at which participants abandon the task in reference
to their randomly assigned condition.

5.4.3 Latency vs. Bandwidth
The security mitigations that we modeled in this exper-

iment are high latency in nature: participants were inter-
rupted and had to pause their current task until the miti-
gation had completed running. Once complete, participants
were free to resume their task at full speed until they were
interrupted again. Other types of security mitigations are
high bandwidth in nature: users are not interrupted, but the
speed at which they can perform their tasks is noticeably de-
creased. We expect to perform experiments in this area as
well, in order to further explore the types of slowdowns that
are likely to be tolerated.

One particular example is the Tor project. Tor is an
anonymous proxy network that uses onion routing [9]. One
disadvantage of onion routing is that the level of privacy
is directly proportional to the number of hops that packets
must traverse. Obviously, this means that privacy comes
at a time cost. This creates profound design decisions for
Tor’s designers when it comes to specifying default configu-
rations. However, these decisions can be made easier with
a better understanding of how much delay users are willing
to tolerate in the name of increased privacy.

6. REFERENCES
[1] A. Acquisti. Privacy in Electronic Commerce and The

Economics of Immediate Gratification. In Proceedings
of the 5th ACM Conference on Electronic Commerce,
pages 21–29. ACM, 2004.

[2] A. Acquisti. Nudging Privacy: The Behavioral
Economics of Personal Information. IEEE Security
and Privacy, 7(6):82–85, 2009.

[3] E. Berman and L. Heger. Scanners Help Economy by
Warding Off Fear of Flying.
http://www.cnn.com/2010/OPINION/02/08/Berman.

terrorism.scanners/index.html, February 8 2010.

[4] J. Brustoloni and R. Villamaŕın-Salomón. Improving
Security Decisions with Polymorphic and Audited
Dialogs. In Proceedings of the 3rd Symposium on
Usable Privacy and Security, pages 76–85. ACM, 2007.

[5] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in The Real World. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and
Implementation, pages 232–244, New York, NY, USA,
2003. ACM.

[6] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, Q. Zhang, and
H. Hinton. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proc. 7th
USENIX Security Conference, pages 63–78, San
Antonio, Texas, January 1998.

[7] L. Cranor and S. Garfinkel. Security and Usability:
Designing secure systems that people can use. O’Reilly
Media, Inc., 2005.

[8] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A
flexible information flow architecture for software
security. In ISCA ’07: Proceedings of The 34th Annual
International Symposium on Computer Architecture,
pages 482–493, New York, NY, USA, 2007. ACM.

[9] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The Second-Generation Onion Router. In Proceedings
of the 13th USENIX Security Symposium, August
2004.

[10] M. Dowd and A. Sotirov. How to impress girls with
browser memory protection bypasses. In BlackHat
Briefings Las Vegas, 2008.

[11] S. Egelman, L. F. Cranor, and J. Hong. You’ve been
warned: An empirical study of the effectiveness of web
browser phishing warnings. In CHI ’08: Proceeding of
The 26th SIGCHI Conference on Human Factors in
Computing Systems, pages 1065–1074, New York, NY,
USA, 2008. ACM.

[12] H. Etoh. GCC Extension for protecting applications
from stack-smashing attacks (ProPolice).

http://www.trl.ibm.com/projects/security/ssp/,
2003.

[13] J. Grossklags, N. Christin, and J. Chuang. Secure or
insure? A game-theoretic analysis of information
security games. In Proceedings of the 2008 World
Wide Web Conference (WWW’08), pages 209–218,
Beijing, China, Apr. 2008.

[14] C. Herley. So Long, and No Thanks for The
Externalities: The rational rejection of security advice
by users. In NSPW ’09: Proceedings of The 2009 New
Security Paradigms Workshop, pages 133–144, New
York, NY, USA, 2009. ACM.

[15] M. Jakobsson. Experimenting on Mechanical Turk: 5
How Tos. http://blogs.parc.com/blog/2009/07/
experimenting-on-mechanical-turk-5-how-tos/,
July 2009.

[16] R. W. M. Jones and P. H. J. Kelly.
Backwards-Compatible Bounds Checking for Arrays
and Pointers in C Programs. In Distributed Enterprise
Applications, pages 255–283, 1997.

[17] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing User
Studies with Mechanical Turk. In CHI ’08: Proceeding
of The Twenty-Sixth Annual SIGCHI Conference on
Human Factors in Computing Systems, pages 453–456,
New York, NY, USA, 2008. ACM.

[18] E. Langer, A. Blank, and B. Chanowitz. The
Mindlessness of Ostensibly Thoughtful Action: The
Role of “Placebic” Information in Interpersonal
Interaction. Journal of Personality and Social
Psychology, 36(6):635–642, 1978.

[19] G. Loewenstein and E. Haisley. The Economist as
Therapist: Methodological ramifications of ‘light’
paternalism. In A. Caplin and A. Schotter, editors,
The Foundations of Positive and Normative
Economics: A Handbook, pages 210–245. Oxford
University Press, USA, 2008.

[20] S. McCamant and G. Morrisett. Evaluating SFI for a
CISC architecture. In 15th USENIX Security
Symposium, pages 209–224, Vancouver, BC, Canada,
August 2–4, 2006.

[21] Microsoft Corporation. IE8 Security Part 1: DEP/NX
Memory Protection. http://blogs.msdn.com/ie/
archive/2008/04/08/ie8-security-part-I_3A00_

-dep-nx-memory-protection.aspx, 2008.

[22] S. Milgram. Behavioral Study of Obedience. Journal
of Abnormal and Social Psychology, 67:371–378, 1963.

[23] H. Ozdoganoglu, T. Vijaykumar, C. E. Brodley, B. A.
Kuperman, and A. Jalote. SmashGuard: A Hardware
Solution to Prevent Security Attacks on the Function
Return Address. IEEE Transactions on Computers,
55:1271–1285, 2006.

[24] PaX Project. Address space layout randomization.
http://pageexec.virtualave.net/docs/aslr.txt,
Mar 2003.

[25] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle:
A defense against heap-spraying code injection
attacks. In Proceedings of the Usenix Security
Symposium, August 2009.

[26] J. Ross, A. Zaldivar, L. Irani, and B. Tomlinson. Who
are the Turkers? Worker Demographics in Amazon
Mechanical Turk. Technical Report
SocialCode-2009-01, University of California, Irvine,

2009.

[27] B. Schneier. The Psychology of Security.
Communications of the ACM, 50(5):128, 2007.

[28] B. Schneier. Is Aviation Security Mostly for Show?
http:

//www.cnn.com/2009/OPINION/12/29/schneier.air.

travel.security.theater/index.html, December
2009.

[29] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and
L. F. Cranor. Crying Wolf: An Empirical Study of
SSL Warning Effectiveness. In Proceedings of the 18th
USENIX Security Symposium, 2009.

[30] R. Thaler and C. Sunstein. Nudge: Improving
decisions about health, wealth, and happiness. Yale
University Press, New Haven and London, 2008.

[31] J. Tsai, S. Egelman, L. Cranor, and A. Acquisti. The
Effect of Online Privacy Information on Purchasing
Behavior: An experimental study. Information
Systems Research, 2010, Forthcoming.

[32] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isolation. In
SOSP ’93: Proceedings of The Fourteenth ACM
Symposium on Operating Systems Principles, pages
203–216, New York, NY, USA, 1993. ACM.

