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ABSTRACT

We are approaching an environment where ubiquitous com-
puting devices will constantly accept input via audio and
video channels: kiosks that determine demographic infor-
mation of passersby, gesture controlled home entertainment
systems and audio controlled wearable devices are just a few
examples. To enforce the principle of least privilege, recent
proposals have suggested technical approaches to limit third-
party applications to receiving only the data they need, rather
than entire audio or video streams. For users to make in-
formed privacy decisions, applications will still need to com-
municate what data they are accessing and indicators will
be needed to communicate this information. We performed
several crowdsourcing experiments to examine how potential
users might conceptualize and understand privacy indicators
on ubiquitous sensing platforms.
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INTRODUCTION

Within a week of its release, eight thousand beta testers
signed up to pay $1,500 each for Google Glass [33]], while
countless others were added to a waiting list. We have also
seen a recent demand for “smart watches,” devices worn on
the wrist and paired with a smartphone, allowing the user to
take calls, view messages, and run third-party applications.
One such device, the Pebble, raised over $10 million from
85,000 individuals using a crowd funding campaign [28],
clearly illustrating public demand for these devices. Mi-
crosoft’s Xbox One features voice and gesture control, as
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well as camera-based user recognition [26]. Intel has also
announced that by mid-2014, many laptops will be equipped
with their “RealSense” camera, which can be used to recog-
nize gestures and voice commands [16]. All of these plat-
forms allow third-party application developers to design ap-
plications that take advantage of new interaction modalities.

These devices all have the ability to perform ubiquitous sens-
ing, which means that they require microphones and cameras
to continuously monitor the user’s environment for input. The
sudden demand for these devices suggests that they will soon
become a part of everyday life, which will create new security
and privacy challenges [18]. Research on smartphone privacy
and security has shown that granting third-party applications
access to sensor data can create rich user experiences, but it
can also be used for things other than application functional-
ity (e.g., advertising and analytics), which users find concern-
ing and surprising [25]. Thus, ubiquitous sensing platforms
should employ privacy indicators so that users can better un-
derstand and control how data inferred from audio and video
channels may be used by applications.

Research on smartphone privacy has shown us that care needs
to be taken with the design of these privacy indicators. For
instance, the Android operating system attempts to make
this privacy information available to users, but as Felt et
al. showed, most users do not notice or understand these no-
tifications [[11]]. Thus, it is important to thoroughly evaluate
privacy indicators prior to their widespread deployment. At
the same time, privacy indicators for ubiquitous sensing sys-
tems pose an interesting challenge because researchers can-
not fully predict all the ways that data from audio and video
sensors might be used in the future.

We document the creation and evaluation of a set of privacy
indicators for ubiquitous sensing platforms. Because these
technologies are not yet widely deployed, we examined how
potential users would conceptualize these privacy indicators
and what pitfalls we might be able to identify prior to these
privacy issues becoming too entrenched. These indicators
are meant to be as universally understood as possible, so we
adopted an approach based on crowdsourcing. We collected
238 sketches from participants based on 14 ubiquitous sens-
ing concepts. We performed thematic analyses and used the
uncovered themes as templates for new privacy indicator de-
signs. We then performed comprehension evaluations with



over 1,500 participants. We discuss how some privacy con-
cepts were well-understood and are therefore not necessar-
ily endemic to specific technologies, whereas other concepts
may require the technologies to be in widespread use before
they can be adequately communicated to end-users. Besides
identifying future focus areas for risk communication sur-
rounding ubiquitous sensing technologies, we present a new
method for privacy indicator design based on crowdsourcing.

BACKGROUND

While research pertaining to privacy in ubiquitous computing
systems has been performed for over two decades, there are
still many open questions about how to integrate usable pri-
vacy controls into specific systems, because it is impossible
to know the full functionality of future systems. At the same
time, researchers have shown that the “crowd” is a useful re-
source for many different research areas, including usable se-
curity and design [|19,17]], and can be used to rapidly evaluate
new systems and designs using sample sizes that were previ-
ously unheard of. In this section, we discuss some of the re-
lated work as it pertains to privacy for ubiquitous computing
systems and crowdsourcing-based evaluations.

Ubiquitous Sensing

In 1991, Marc Weiser predicted the rise of ubiquitous com-
puting and warned that “hundreds of computers in every
room, all capable of sensing people near them and linked by
high-speed networks, have the potential to make totalitarian-
ism up to now seem like sheerest anarchy” [36]. He observed
that many of these concerns could be mitigated by integrating
privacy mechanisms into the earliest stages of system designs.

Over the past two decades, in recognition of the grow-
ing ubiquitous computing trend, many researchers have of-
fered suggestions for how these systems should be designed
(e.g., [2419, 20} 24, |1]]), including methods for addressing pri-
vacy concerns (e.g., [29, |13} |15, 30]). For instance, Bellotti
and Sellen introduced a set of eleven criteria for the evalu-
ation of privacy in ubiquitous computing environments that
focus on giving users control over information capture [3|.
Langheinrich recommended a set of six principles for sys-
tem design based on privacy guidelines from the Organization
for Economic Cooperation and Development (OECD) [23]].
However, most of this research has focused on general design
principles, rather than specific implementations.

To help users understand how applications access sensitive
data, most smartphone platforms employ some sort of per-
mission system. Felt e al. examined the Android permission
system, which uses install-time dialogs to list the abilities that
an application will have, and found that most users do not
notice or understand these permission requests [11]. Enck et
al. developed the TaintDroid system to allow users to examine
how applications may be using personal data in realtime [[10].
Others have designed system to limit the amount of data re-
ceived by applications (e.g., [4} |14} [12]]). However, most of
this research has been conducted after the platforms were al-
ready in wide deployment, making it difficult for developers
to radically alter their systems to support the researchers’ rec-
ommendations. Thus, our work is motivated by the fact that

ubiquitous sensing platforms are beginning to receive public
demand, so there is a unique opportunity to solve privacy and
security problems before they become entrenched.

Roesner et al. looked at privacy and security issues related to
the types of ubiquitous sensing platforms that our research is
aimed at benefitting [31]. D’ Antoni et al. suggested ways in
which platforms can be designed to mitigate some of these
problems [7]]. Specifically, they advocated supporting the
principle of least privilege: applications should only be given
access to the data that they need to function, and nothing
more [32]]. Thus, if an application needs to recognize a voice
command, the operating system should parse the raw audio
and pass the command to the application without granting ac-
cess to the entire raw audio stream, as this information is per-
sonally identifiable and could be used for other purposes. For
systems to be trustworthy, they need to communicate how and
when applications are accessing potentially sensitive data.

Crowdsourcing

Crowdsourcing, the process of leveraging large groups of
people to perform short tasks, has attracted a lot of attention
as a research tool [21]. Researchers have explored crowd-
sourcing as a tool for gathering subjective judgments about
various online media. Most famously, von Ahn et al. cre-
ated the ESP game to get Internet users to agree on image
labels [35]]. Kumar et al. used crowdsourcing to classify vary-
ing website layouts [22]]. Bernstein et al. created a word pro-
cessor that uses crowdsourcing for on-demand editing [5]].

Dow et al. showed how crowdsourcing can benefit the design
process. In their study, they used crowdsourcing to get feed-
back about different types of banner advertisements [8]. We
build on this work by using crowdsourcing as an evaluation
mechanism for the design of various privacy indicators.

Perceptual Computing

The privacy indicators that we designed for this project were
directly inspired by Intel’s RealSense SDK [[16]. The SDK
implements the recommendations of D’ Antoni et al. [[7]]: ap-
plication developers are provided with a set of API methods
for extracting information from audio and video sensors so
that those applications can request only the data needed to
function, rather than requesting raw audio or video. This has
the benefit of limiting privacy-sensitive information, while
also making it easier for applications to make use of rich
sensor data (i.e., the platform does most of the processing
and feature extraction so that developers do not need to). In
essence, the platform enforces a permissions model and the
role of the indicators is to communicate what type of data the
application is accessing. Note that in this paper we do not ex-
amine participants’ privacy sensitivities surrounding the data.
Instead, we concentrate on the issue of whether users under-
stand what data is being requested by applications, a prereq-
uisite for making informed privacy decisions.

INITIAL COMPREHENSION RATES

When we began this project in August of 2013, Intel was in
the process of internally developing a set of privacy indica-
tors. These initial indicators were designed ad hoc by an Intel
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Table 1: Comprehension rates for the initial icons (the icon
with the highest comprehension rate per concept is depicted).

UI designer. Our initial goal was to examine whether poten-
tial users would be able to understand the meaning of these
icons, and if not, which ones needed to be improved to bet-
ter convey their intended concepts. We received a total of 26
indicators representing 11 different concepts:

. Video Recording (3 icons)

. Audio Recording (2 icons)

. Age Detection (4 icons)

Camera-Based Emotion Detection (3 icons)
. Voice-Based Emotion Detection (2 icons)
Gender Detection (4 icons)

. Face Detection (2 icon)

. Face Recognition (3 icons)

. Voice Command & Control (1 icon)

. Language Detection (1 icon)

. Heart Rate Detection (1 icon)
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Open-Ended Survey

We recruited participants from Amazon’s Mechanical Turk to
participate in a survey on “camera icons.” At the start of the
task, we gave participants the following instructions:

Imagine in the future all computers (e.g., laptops,
desktops, public displays/kiosks, etc.) will have cam-
eras and microphones attached to them, which are al-
ways on so that applications can be controlled through
gestures or spoken commands. Symbols or icons will be
needed to indicate when a camera/microphone is record-
ing, and whether an application has access to raw data
(i.e., audio or video of the user) that can be used for
any purpose, or if it can only access less-sensitive data
that can only be used for limited purposes (e.g., deter-
mining the user’s gender, a spoken command, the user’s
approximate age, etc.). In this survey, we will show you
various icons that might be used for this purpose (i.e.,
these icons would appear in the designated area of the
camera/microphone in the picture above). Your job is to
describe what you think the camera/microphone is doing
based on the icons that you are shown.

Each page of the survey featured one of the icons followed by
a text box asking, “based on this icon, what do you believe is
being captured?” Each participant only viewed one random
icon per concept, and we randomized the order of the con-
cepts. We compensated participants $1.00 per survey submis-
sion and collected 208 responses in this manner. Our sample
consisted of 56.7% females, an average age of 34 (¢ = 11.6,
range of 18-74), and 50.5% held a bachelor’s degree or higher
(23 held graduate degrees, including 4 doctorates).

Three researchers independently scored each response based
on whether it matched the intended meaning for each icon.
To measure inter-rater reliability, we calculated Fleiss’ kappa
(k = 0.757). In total, we received descriptions for 2,181
icons, but for the remainder of our analysis, we only focus on
the 1,853 (85%) for which all three raters were in agreement.

We were surprised at how similar the comprehension levels
were for different icons depicting the same concepts. Of the
11 concepts that we examined, eight had multiple candidate
icons. Thus, we performed Fisher’s exact test to measure the
comprehension rates between the highest and lowest ranked
icons for each of these concepts. We performed eight tests in
this manner and therefore applied the Bonferroni correction
(o = 0.006). Only in one case, recording video, was one icon
significantly more intuitive than another for the same concept
(p < 0.004). Regardless, for the remainder of our analysis
we selected the icon with the highest comprehension rate in
order to pair each concept with a single icon (Table[T).

Common Misunderstandings

By and large, video and audio icons were understood by al-
most everyone (97% and 94%, respectively). Therefore, we
focused on the incorrect responses for the remaining nine
icons to see if any patterns emerged, and whether these mis-
conceptions could further guide the design process. Three
independent coders performed a thematic analysis on the in-
correct responses to the open-ended survey. They each identi-



fied the most common themes among the incorrect responses
for each of these nine icons. We enumerated these themes
and calculated the Intraclass Correlation Coefficient (ICC) to
be approximately 0.94, indicating almost perfect agreement.

Age Detection

Of the 42 incorrect responses for the age detection icon, a ma-
jority of participants stated that the icon meant that a group
of people were being captured on video: “multiple people in
front of it,” “it looks like a group of people are on the camera,”
and “the camera is capturing a group shot of people.” These
responses also mentioned families or video conferences. Av-
eraging across all three coders, this theme accounted for 67%
of the incorrect responses. Common among this theme was
the misconception that the icon was meant to indicate multi-
ple people, rather than multiple phases in an individual’s life.
Based on this, we believe that this icon could be improved
by focusing on extreme differences in age, rather than simply
using similar figures that only vary based on size.

Camera-Based Emotion Detection

Of the 61 incorrect responses to the camera-based emotion
detection icon, a plurality of participants stated that they be-
lieved the icon indicated that a theatrical event was being cap-
tured (41%): “the camera is recording theatrical events or us-
ing a theater app,” “this could signal making videos to put
online for display,” and “I think that a creative movie is being
captured.” We suspect that one reason for this confusion was
that the drama masks used for the icon are a common the-
atrical symbol, and that this could potentially be corrected by
focusing on the facial expressions and not using recognizable
symbols with broader meanings.

Voice-Based Emotion Detection

Of the 83 incorrect responses to the voice-based emotion de-
tection icon, a majority (63%) said that the icon indicated
voice capture: “audio being captured” and “a person singing
on camera.” This suggests that participants focused on the
figure speaking and overlooked (or were confused by) the
emotion icon in the corner. We reasoned that applications
employing emotion detection will receive the same data re-
gardless of whether detection is performed with a camera or
microphone, and therefore this distinction may be unneces-
sary, especially if it leads to confusion about what data an
application is ultimately receiving.

Gender Detection

Of the 20 incorrect gender icon descriptions, most of them
(85%) said that they believed that the icon was indicating both
a male and female were present. An argument could be made
that this is correct: if the device can infer that both genders
are present, then the user understands that gender is being
detected. This suggests that the gender aspect of the icon was
clear, and that participants were confused by the silhouettes of
two individuals next to each other. We felt the design could be
improved by only showing one individual or using symbols.

Face Detection

None of our participants were able to correctly identify any
of the face detection icons. The problem stems from distin-
guishing face defection with recognition; the former refers

to determining whether an individual is present, whereas the
letter refers to the identity of that individual. Of the 21 partic-
ipants who viewed this icon, eighteen said it had to do with a
picture being taken (86%), ten specifically mentioned that the
box indicated the focus area: “this icon means the camera is
capturing a visual, zooming in or focusing” and “the camera
is determining where to focus.” While it is technically correct
to say that the camera is focusing on this area, this icon was
supposed to indicate that only the user’s presence would be
shared with applications, and not her identity.

Face Recognition

Similar to the face detection icon, the face recognition icon
had a very low rate of comprehension. Of the 52 incorrect re-
sponses, a plurality (37%) focused on concepts surrounding
detection errors: “cannot tell who the person is...facial recog-
nition did not work,” “I believe my image is being recorded
but the camera is having a hard time recognizing my face,”
and “the camera cannot discern who the person is.” This sug-
gests that much of the confusion was due to the question mark
over the face; participants believed that this meant that the de-
tection had failed, rather than that it was in progress.

Voice Command & Control

While the voice command icon also received a very low rate
of correct responses in the open-ended survey, the incorrect
responses were extremely similar: of the 188 incorrect re-
sponses, 83% said that the icon meant that either all audio or
the user’s voice was being captured. These responses were
all incorrect, because the intent for the icon was to convey
that only the name of a command would be accessible, rather
than the user’s voice, which is personally identifiable. This
suggests that an improved icon might better demonstrate the
command aspect, and downplay the speaking element.

Language Detection

We received a total of 64 incorrect responses for the language
detection icon. A plurality of these (48%) had to do with
the incorrect belief that voices and/or raw audio was being
captured: “the microphone is capturing the user’s voice,” “the
microphone is picking up sounds,” and “the icon looks like
your voice is being recorded.” These errors were very similar
to the errors seen with the voice command icon and therefore
suggest that less emphasis should be placed on the speaker.

Heart Rate Detection

Finally, we received a total of 162 incorrect responses to the
heart rate detection icon. Of these, a plurality (37%) had con-
fused the icon with emotion detection. Specifically, they in-
terpreted this icon to mean that the user is in love or is other-
wise emotionally attached to someone or something: “this
icon looks like this person really enjoys something,” “this
looks like romance,” and “this seems to be indicating strong
emotion, love in particular.” One way of disambiguating the
love aspect of the heart may be to indicate that it is beating,
such as by superimposing an electrocardiogram (EKG).

Broadly speaking, the types of errors that we observed fell
into four categories. First, many participants were confused
by common symbols that they may have recognized in other
contexts. For instance, in the heart rate detection icon, they



Figure 1: The picture used in our instructions so that partici-
pants could understand how the icons would be used.

assumed that the heart had to do with “love” or “emotions;”
in the face recognition icon, they assumed that the question
mark indicated that the computer was indicating an error; and
in the emotion detection icon, they assumed that the drama
masks had to do with drama or the theater. Second, many par-
ticipants were confused when we attempted to describe both
what and how data was being captured (e.g., camera-based
emotion detection vs. voice-based emotion detection). Next,
many participants found the depiction of multiple individuals
in the gender and age icons to be misleading. Finally, sev-
eral of the concepts were too similar to other concepts, for
instance audio recording vs. voice command & control, or
face detection vs. face recognition.

CROWDSOURCING THEMES

Our first experiment yielded insights into how our initial set
of privacy indicators could be improved, however, it is possi-
ble that the comprehension rates were so low for some of the
concepts because these indicators were the work of a single
designer. We examined how potential users might choose to
depict each of these concepts. We performed a second crowd-
sourcing experiment in which we described various ubiqui-
tous sensing concepts and asked participants to draw their
own icons to convey them. In this manner, we built a corpus
of icons on which we performed thematic analysis to examine
the common themes that each concept evoked.

Methodology
We posted a Mechanical Turk task with the following prompt:

Imagine in the future every computer has a camera
and microphone that can be used to capture user input
(e.g., spoken commands or hand gestures). This might
include desktops, laptops, entertainment systems (TVs),
and even public displays.

To protect privacy, these devices will need to com-
municate when they are on and recording, and how this
data will be used.

In this task, we will describe a scenario and then you
must design an icon to communicate how the recorded
audio and/or video will be used. These icons will be
displayed on the devices whenever an application is re-
questing data for a particular purpose.

We then showed participants a picture of such a device (Fig-
ure [T so that they could get a better idea of this icon’s func-
tion. After reading these instructions, we presented partici-
pants with one of fourteen conceptsﬂ drawn at random:

1. Video Recording: The video camera will record video of
whoever is in front of it (i.e., applications will have access
to all recorded video/images).

2. Audio Recording: The microphone will record audio of
whoever is nearby (i.e., applications will have access to all
recorded audio).

3. Face-Based Age Detection: The camera will only be used
to determine the user’s approximate age, and then will al-
low various applications to learn the user’s age. However,
no applications will have access to pictures or video of the
user.

4. Face-Based Emotion Detection: The camera will take
pictures to determine the user’s approximate emotional
state, and then allow various applications to learn the user’s
emotional state. However, no applications will have access
to raw camera data (i.e., pictures or video of the user).

5. Face-Based Gender Detection: The camera will take pic-
tures to determine the user’s gender, and then allow various
applications to learn the user’s gender. However, no appli-
cations will have access to raw camera data (i.e., pictures
or video of the user).

6. Face Detection: The camera will monitor whether a hu-
man being is in front of the computer and then notify ap-
plications when a user is present. However, applications
will not have access to pictures or video of the user, nor
will they learn the user’s identity.

7. Face Recognition: The camera will take pictures to deter-
mine the identity of the individual in front of the camera,
and then allow various applications to learn the identity of
this user. However, no applications will have access to raw
camera data (i.e., pictures or video of the user).

8. Voice Command & Control: The microphone will be
used to recognize spoken commands, and then will share
those commands with applications. However, no applica-
tions will have direct access to audio.

9. Speech to Text: The microphone will capture audio and
convert it to text, and then allow various applications to
access this text. However, no applications will have access
to raw microphone data (i.e., audio from the user).

10. Language Detection: The microphone will be used to de-
termine the language being spoken, and then will notify
various applications of the user’s language. However, no
applications will have direct access to audio.

11. Gesture Recognition: The camera will take pictures to
recognize gesture-based commands, and then allow vari-
ous applications to access these commands. However, no
applications will have access to raw camera data (i.e., pic-
tures or video of the user).

12. Voice-Based Emotion Detection: The microphone will
capture audio to determine the user’s approximate emo-

"We included 3 new concepts supported by the latest RealSense plat-
form that were not included with the previously-evaluated designer-
created icons: speech to text, gesture detection, and eye tracking.



tional state, and then allow various applications to learn the
user’s approximate emotional state. However, no applica-
tions will have access to raw microphone data (i.e., audio
from the user).

13. Eye Tracking: The camera will determine approximately
where the user is looking on the screen, and then will share
the coordinates with various applications. However, no ap-
plications will have access to raw camera data (i.e., pictures
or video of the user).

14. Heart Rate Monitor: The camera and microphone will
capture audio and video to determine the user’s approxi-
mate heart rate, and then allow various applications to learn
the user’s heart rate. However, no applications will have ac-
cess to raw camera or microphone data (i.e., video/images
or audio of the user).

We included a use case for each concept to better convey why
an application may want access to that data (and why it might
be beneficial to the user). Alongside the concept description
and use case, we provided participants with a sketching ap-
plet, as well as a box to explain how their drawing illustrates
the given concept. We restricted our task to participants 18
years of age or older, but did not restrict it to a particular ge-
ographic area, in hopes of receiving submissions from a wide
variety of individuals. We paid each participant $0.25.

Results

We received a total of 274 different sketches across all 14
concepts (an average of 17 sketches per concept). We dis-
carded 36 (13%) sketches because the textual descriptions ei-
ther contained gibberish or had nothing to do with the con-
cepts, indicating that these participants did not take the task
seriously. With the remaining 238 sketches, we performed a
thematic analysis. Three of us independently made lists of
themes that appeared across multiple sketches of the same
concept. We then created a codebook based on these themes
and two of us enumerated how many sketches embodied each
of the coded themes. Based on our independent calculations
of how frequently each theme occurred, we calculated the
ICC to be 0.86, indicating almost perfect agreement. Our next
step was to establish how many themes for each concept we
would focus on in future experiments. After observing that
for most concepts the top two themes were found in a major-
ity of sketches, we focused on only the top two most preva-
lent themes in each concept. Table[2]depicts these themes and
Figure [2| depicts some of participants’ drawings.

Based on these themes, we made several observations. First,
we were surprised that at least one of the themes for each
concept appeared in our set of designer-provided icons:

e The video and audio icons embodied the camera and mi-
crophone, respectively.

The age detection icon depicted child and adult.

The emotion detection icon featured a happy and sad face.
The gender detection icon featured male/female symbols.
The face detection icon featured a framed face.

The face recognition icon featured a face.

The voice command icon featured a person speaking.

| Concept | Top Themes
. . e camera (10)
Video Recording (19) o recording light (7)
. . e microphone (16)
Audio Recording (25) o sound waves (14)
Face-Based Age e child or adult (6)
Detection (16) e child and adult (4)
Face-Based Emotion e smiley face (9)
Detection (13) e happy and sad face (6)
Face-Based Gender e male/female symbols (7)
Detection (14) e male/female figures (5)
. e face (15)
Face Detection (16) e camera frame or crosshairs (5)
.. e face (14)
Face Recognition (16) e camera frame or crosshairs (7)
Voice Command e person speaking (6)
& Control (13) e sound waves (6)
e letters or text (11)
Speech to Text (15) o sound waves (7)
. e foreign characters/words (9)
Language Detection (21) e mouth (5)
Gesture Recognition (11) : }vlgﬁn(gl (I)I)IO tion (6)
Voice-Based Emotion e happy or sad face (14)
Detection (14) e sound waves (7)
L e eyes (24)
Eye Tracking (25) e arrow or directional lines (8)
. e heart (14)
Heart Rate Monitor (20) e EKG (11)

Table 2: The two most prevalent themes for each of the
14 concepts for which participants submitted sketches. The
number after each concept reflects the total number of
sketches, whereas the numbers after the themes reflect how
many sketches reflected each theme (not mutually-exclusive).

e The language detection icon featured a mouth with foreign
characters.

e The voice-based emotion detection icon featured both
sound waves and a happy and sad face.

e The heart rate monitor icon featured a heart.

We also observed that the exact same themes emerged for
both the face detection and face recognition icons, which also
occurred in our initial comprehension survey. This suggests
that users may have a very difficult time differentiating these
two concepts. This is especially concerning since they repre-
sent very different privacy concerns: an individual’s identity
vs. that an individual is present. Because we believe that the
latter represents a much lower risk, we decided to eliminate
the face detection concept from future evaluations.

Finally, we previously observed that between camera-based
emotion detection and voice-based emotion detection, the
same data would be accessed—the user’s emotional state.
Therefore, because it does not matter how that emotional state
is determined, we merged these two concepts into a single in-
dicator. This resulted in a set of 12 final concepts for which
we made new privacy icons based on the themes in Table

EVALUATION

Using the themes that we uncovered from participants’
sketches, we created icons for each of the 12 concepts. For
each concept, we created an average of six icons that em-
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Figure 2: Crowdsourced drawings for six concepts: video
recording (a), audio recording (b), age detection (c), gender
detection (d), emotion detection (e), and face recognition (f).

bodied the themes in different ways. We based our icons on
concrete concepts, following the findings of Curry et al. that
concrete icons are initially much more understandable than
abstract icons (e.g., line art) [6].

We iteratively deployed a survey 5 times, wherein participants
defined an icon by choosing from a set of concepts. With each
iteration, consisting of roughly 250 participants, we reduced
the set of candidates until we were left with 1-2 icons per
concept. Ultimately, we tested 71 different icons on 1,234
participants. We then performed a final evaluation to compare
the designer-supplied icons (control condition) with our final
set of crowdsourcing-inspired icons (experimental condition).
In this section, we describe this final evaluation.

We presented participants with the following instructions:

Imagine in the future all computers (e.g., laptops,
desktops, public displays/kiosks, etc.) will have cameras
and microphones attached to them, which are always on
so that applications can be controlled through gestures
or spoken commands, as well as to learn things about
their users. Symbols or icons will be needed to indicate
what data is being collected about the user.

In this survey, we will show you various icons that
might be used for this purpose (i.e., these icons would
appear in the designated area of the camera/microphone
in the picture above). Your job is to describe what data
you believe is being collected based on the icons that
you are shown.

On each of the 12 pages of the survey (one page per concept),
we randomly displayed either a control condition icon or an
experimental condition icorﬂ and asked them, based on this
icon, what data do you believe is being collected? We pro-
vided them with the following options, in random order:

The language spoken

A hand gesture

Text of anything spoken (speech to text)
Your approximate age

’In the final evaluation, we examined two different experimental
icons for the gender detection and face recognition concepts, and
three icons for the voice command icon.

Video Recording

Audio Recording

Age Detection

E: 84.7% of 138
C: 85.8% of 141
p < 0.872

')

E: 68.8% of 144
C:79.4% of 160
p < 0.036

Ry

E: 86.3% of 160
C:27.1% of 144
p < 0.001

Emotion Detection

Gender Detection

Face Recognition

I_m_l
L

E: 91.2% of 148 E: 96.2% of 104 E: 74.0% of 104
C: 83.3% of 156 C:97.1% of 105 C: 85.3% of 95
p < 0.058 p < 0.721 p < 0.055
Voice Command Language Detection Heart Rate

& Control Detection

))

E: 44.1% of 59
C: 42.6% of 54
p < 1.000

E: 90.5% of 158
C: 67.6% of 145
p < 0.001

E: 98.8% of 160
C:90.9% of 143
p < 0.002

Speech to Text

Gesture Recognition

Eye Tracking

abc

)

E: 73.0% of 141

Y

E: 98.6% of 147

®.

-,
~,
el

E: 98.5% of 134

Table 3: Results of the final evaluation survey with the exper-
imental icons displayed. The comprehension rates are listed
below each icon for both the experimental (E) and control (C)
conditions. Comprehension rates in the experimental condi-
tion were significantly higher for three concepts (o« = 0.006):
age detection, language detection, and heart rate detection.

Eye tracking data (where you are looking)
Video of you

A command (voice control)

Your gender

Your emotional state (mood)

Audio of you

Your face or identity (face recognition)
Your heart rate

For each concept, we performed Fisher’s exact test on the
comprehension rates between the control icon and the exper-
imental icon with the highest comprehension rate. To ac-
count for multiple testing (nine of the twelve concepts fea-



tured designer-supplied control icons), we applied the Bon-
ferroni correction (o« = 0.006). Our sample (n = 304) was
52.2% male (158 of 304), the average age was 33 years old
(0 = 11.3, range of 18 to 68), and 43.1% held a bachelors
degree or higher (23 participants held graduate degrees, in-
cluding two doctorates). Thus, we believe our sample is rep-
resentative of the U.S. online population.

Overall, we were surprised at how similar comprehension
rates were between the two icon sets (Table B): none of
the control condition icons had significantly higher compre-
hension rates than the corresponding experimental condition
icons. This indicates that the crowdsourced icons were no
worse than the original set. More importantly, three exper-
imental condition icons exhibited significantly higher rates
of comprehensions than their control condition counterparts.
Thus, for a third of the concepts—age detection (p < 0.001),
language detection (p < 0.001), and heart rate detection
(p < 0.002)—the icons that we created from crowdsourced
themes were more intuitive than the initial icons.

DISCUSSION

In our initial experiment, we asked participants to pro-
vide open-ended explanations for what they believed vari-
ous designer-drawn privacy indicators represented. In our
last evaluation, we asked participants to perform a similar
task, but instead selecting their responses from a multiple-
choice list of possible explanations. As one might expect,
the latter evaluation resulted in higher comprehension rates
We believe that taken together, these two different ways of
evaluating comprehension—open-ended vs. multiple-choice
responses—represent lower and upper bounds, respectively.

As Moyes et al. observe, “if an icon is not guessable it is
not necessarily an unsuccessful icon” [27]. They hypothe-
size that learnability through repeated exposure may bridge
this gap. Because the technologies that we hope to influence
are not yet widely available, it is unlikely that many subjects
were familiar with their capabilities, which is likely to result
in lower rates of comprehension—guessability—in response
to the open-ended questions (than if subjects had familiar-
ity with the devices). This may be why subjects exhibited
much higher rates of comprehension for the video and audio
recording indicators: technologies that perform these actions
are already in widespread use, and therefore concrete repre-
sentations of these concepts were recognizable.

Along these lines, we believe that one of the biggest as-yet-
unsolved challenges that we faced with this work was dis-
tinguishing face recognition from face detection. The for-
mer is used to identify an individual user, whereas the lat-
ter is used to determine whether someone is present (without
identifying them). In our initial experiments, the designer-
created icons were unable to disambiguate these concepts.
We observed that during the sketching task, the themes that
we extracted from the drawings representing each concept

3We cannot perform a direct statistical comparison because different
indicators were examined, at different times, on different subjects.

were identical. Likewise, during the comprehension experi-
ments, participants’ responses to these two concepts were in-
terchangeable. Due to this confusion, we ultimately decided
to remove the face detection concept because we felt that the
privacy concerns associated with it were minor in compari-
son to those associated with face recognition; as Thompson
et al. recommend, indicators that represent very minor risk
levels should be eliminated so as to prevent users from be-
coming habituated to indicators representing much more se-
rious risks [34]]. We suspect that subjects’ lack of familiarity
with these concepts may be responsible for their inability to
distinguish them. Additionally, it is possible that these con-
cepts are just so similar, that the only way to communicate
the concepts will be through learned association. That is, this
problem may only be solved by simply assigning an icon to
each concept and then expecting subjects to learn each icon’s
meaning through repeated exposure.

Limitations

This study was not without its limitations. Specifically, we
have several questions about the generalizability of our re-
sults. First, with the exception of the drawing task, all of the
evaluations were performed on participants based in the U.S.
Obviously, the systems that we hope to benefit through this
research will be deployed globally. Therefore, more work
needs to be done to examine whether these indicators are ef-
fective at communicating the concepts to an international au-
dience. This may pose a challenge, as the evaluations need
to be conducted in a language that is understood by all par-
ticipants, which could potentially mean hundreds of variants
of a single experiment in order to ensure that an indicator is
universally recognized.

Another limitation of this study is that we only examined a
single set of control icons. Our control icons were developed
internally at Intel by a professional designer and they pro-
vided a good baseline for us to compare our crowdsourcing-
inspired icons against. However, they represent but a single
designer’s work and therefore are not representative of the
entire profession. It is possible that icons from a different
designer would yield substantially different results.

Finally, the concepts that we examined consist of use cases
for ubiquitous sensing platforms that are likely to be sup-
ported in the near term. Because these technologies are still
under development and we cannot possibly know what the
“killer applications” are going to be ten years from now, it
is possible—indeed likely—that many more privacy-sensitive
use cases are likely to be identified in the coming years.
While our findings are likely to be relevant as these platforms
continue to be developed, they are by no means complete.
More work needs to be performed to thoroughly understand
the range of privacy risks associated with these technologies,
how users perceive those risks, and how the relevant informa-
tion can best be communicated to users.

Conclusion and Future Work

We present a crowdsourced approach to the design of pri-
vacy icons for a ubiquitous sensing platform. These icons are
meant to communicate specific data collection scenarios to



users, for instance, video recording or gender detection. We
experimented with a three-stage process where (1) Mechan-
ical Turkers would design icons, (2) synthesis of new icons
from the Mechanical Turk icons, and (3) Mechanical Turk
evaluation of the synthesized icons. We compare our process
with a set of designer-drawn icons, and for each of our sce-
narios the crowdsourcing approach performed no worse and
sometimes significantly better.

In the future, one can imagine a multitude of sensors that are
constantly being used to make inferences about and detect
objects in the users’ environment; some sensors may be used
for redundancy or improved accuracy, for instance, simulta-
neously using both audio and video to identify a user. For
access control purposes, all of these sensors will need to be
managed by the platform and abstracted away so that appli-
cations need only access the resulting data. In this case, the
role of a privacy indicator is to convey what information is be-
ing accessed by the application, not what sensors were used
by the platform to extract that information. We observed that
when we examined indicators that included additional infor-
mation about how the data was extracted (i.e., what sensors
were used), it was a distraction that resulted in lower com-
prehension rates. Participants focused on this information in-
stead of the more important elements—what data was being
accessed. Thus, our results suggest that these types of pri-
vacy indicators should be designed to convey what informa-
tion will be used by applications, not sow it will be collected.
However, additional studies are needed to examine whether
users really care about this distinction.

Another interesting area is the difficulty in disambiguating the
face detection and face recognition concepts. Future work
needs to be conducted to examine potential users’ risk con-
cerns surrounding these data collection concepts.

ACKNOWLEDGEMENTS

We would like to thank Jacob Carter for creating the initial
icon set and the Intel Software and Services Group (SSG) for
their assistance. This work was supported by the Intel Science
and Technology Center for Secure Computing (ISTC-SC).

REFERENCES
1. G. D. Abowd, G. R. Hayes, G. Iachello, J. A. Kientz,
S. N. Patel, M. M. Stevens, and K. N. Truong.
Prototypes and paratypes: Designing mobile and
ubiquitous computing applications. IEEE Pervasive
Computing, 4(4):67-73, Oct. 2005.

2. G.D. Abowd and E. D. Mynatt. Charting past, present,
and future research in ubiquitous computing. ACM
Trans. Comput.-Hum. Interact., 7(1):29-58, Mar. 2000.

3. V. Bellotti and A. Sellen. Design for privacy in
ubiquitous computing environments. In Proceedings of
the third conference on European Conference on
Computer-Supported Cooperative Work, pages 77-92,
Norwell, MA, USA, 1993. Kluwer Academic
Publishers.

4. A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
Mockdroid: Trading privacy for application

10.

11.

12.

13.

functionality on smartphones. In Proceedings of the 12th
Workshop on Mobile Computing Systems and
Applications, HotMobile 11, pages 49-54, New York,
NY, USA, 2011. ACM.

. M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann,

M. S. Ackerman, D. R. Karger, D. Crowell, and

K. Panovich. Soylent: A word processor with a crowd
inside. In Proceedings of the 23Nd Annual ACM
Symposium on User Interface Software and Technology,
UIST 10, pages 313-322, New York, NY, USA, 2010.
ACM.

. M. B. Curry, S. J. McDougall, and O. de Bruijn. The

effects of the visual metaphor in determining icon
efficacy. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, volume 42, pages
1590-1594. SAGE Publications, 1998.

. L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits,

D. Molnar, A. Moshchuk, E. Ofek, F. Roesner,

S. Saponas, M. Veanes, and H. J. Wang. Operating
system support for augmented reality applications. In
Proceedings of the 14th USENIX Conference on Hot
Topics in Operating Systems, HotOS 13, pages 21-21,
Berkeley, CA, USA, 2013. USENIX Association.

. S. P. Dow, A. Glassco, J. Kass, M. Schwarz, D. L.

Schwartz, and S. R. Klemmer. Parallel prototyping leads
to better design results, more divergence, and increased
self-efficacy. ACM Trans. Comput.-Hum. Interact.,
17(4):18:1-18:24, Dec. 2010.

. W. K. Edwards and R. E. Grinter. At home with

ubiquitous computing: Seven challenges. In
Proceedings of the 3rd International Conference on
Ubiquitous Computing, UbiComp 01, pages 256272,
London, UK, UK, 2001. Springer-Verlag.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, OSDI’ 10, pages 1-6, Berkeley, CA,
USA, 2010. USENIX Association.

A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: user attention,
comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security,
SOUPS ’12, New York, NY, USA, 2012. ACM.

S. Guha, M. Jain, and V. N. Padmanabhan. Koi: A
location-privacy platform for smartphone apps. In
Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation,
NSDI'12, pages 14—14, Berkeley, CA, USA, 2012.
USENIX Association.

J.1. Hong, J. D. Ng, S. Lederer, and J. A. Landay.
Privacy risk models for designing privacy-sensitive
ubiquitous computing systems. In Proceedings of the 5th
Conference on Designing Interactive Systems:
Processes, Practices, Methods, and Techniques, DIS
’04, pages 91-100, New York, NY, USA, 2004. ACM.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

P. Hornyack, S. Han, J. Jung, S. Schechter, and

D. Wetherall. These aren’t the droids you’re looking for:
retrofitting android to protect data from imperious
applications. In Proceedings of the 18th ACM conference
on Computer and communications security, CCS ’11,

pages 639-652, New York, NY, USA, 2011. ACM.

G. Iachello and G. D. Abowd. Privacy and
proportionality: Adapting legal evaluation techniques to
inform design in ubiquitous computing. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 05, pages 91-100, New York,
NY, USA, 2005. ACM.

Intel Corporation. Intel RealSense Technology, 2014.
http://www.intel.com/content/www/us/en/
architecture-and-technology/
realsense-overview.html.

R. Kang, S. Brown, L. Dabbish, and S. Kiesler. Privacy
Attitudes of Mechanical Turk Workers and the U.S.
Public. pages 37-49. USENIX Association, Submitted.

R. Kannavara and K. Shippy. Topics in Biometric
Human-Machine Interaction Security. Potentials, IEEE,
32(6):18-25, 2013.

P. G. Kelley. Conducting Usable Privacy & Security
Studies with Amazon’s Mechanical Turk. In
Proceedings of the 6th Symposium on Usable Privacy
and Security (SOUPS), SOUPS 2010. USENIX
Association, 2010.

T. Kindberg and A. Fox. System software for ubiquitous
computing. IEEE Pervasive Computing, 1(1):70-81,
Jan. 2002.

A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing User
Studies with Mechanical Turk. In CHI 08: Proceeding
of The Twenty-Sixth Annual SIGCHI Conference on
Human Factors in Computing Systems, pages 453-456,
New York, NY, USA, 2008. ACM.

R. Kumar, J. O. Talton, S. Ahmad, and S. R. Klemmer.
Bricolage: Example-based retargeting for web design. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI "11, pages
2197-2206, New York, NY, USA, 2011. ACM.

M. Langheinrich. Privacy by design - principles of
privacy-aware ubiquitous systems. In Proceedings of the
3rd international conference on Ubiquitous Computing,
UbiComp ’01, pages 273-291, London, UK, UK, 2001.
Springer-Verlag.

S. Lederer, J. I. Hong, A. K. Dey, and J. A. Landay.
Personal privacy through understanding and action: Five
pitfalls for designers. Personal Ubiquitous Comput.,
8(6):440-454, Nov. 2004.

J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and
J. Zhang. Expectation and purpose: understanding users’
mental models of mobile app privacy through
crowdsourcing. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, UbiComp *12,
pages 501-510, New York, NY, USA, 2012. ACM.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Microsoft Corporation. Xbox One, 2014.

http://www.xbox.com/en-US/xbox—one/innovation,

J. Moyes and P. W. Jordan. Icon design and its effect on
guessability, learnability, and experienced user
performance. People and computers, (8):49-60, 1993.

J. Newman. Pebble smartwatch pre-orders are sold out,
$10+ million pledged. Time, May 10 2012.
http://techland.time.com/2012/05/10/
pebble-smartwatch-pre—-orders—-sold-out/.

L. Palen and P. Dourish. Unpacking “privacy” for a
networked world. In CHI ’03: Proceedings of the
SIGCHI conference on Human factors in computing
systems. ACM New York, NY, USA, April 5-10 2003.

A. Raij, A. Ghosh, S. Kumar, and M. Srivastava. Privacy
risks emerging from the adoption of innocuous wearable
sensors in the mobile environment. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI *11, pages 11-20, New York, NY, USA,
2011. ACM.

F. Roesner, T. Kohno, and D. Molnar. Security and
privacy for augmented reality systems. Communications
of The ACM, 2014. http: //www. franziroesner.com/
pdf/arsec—cacm2014-preprint.pdf

J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278-1308, 1975.

J. Stern. Google glass explorer edition to ship this

month. ABC News, April 10 2013.
http://abcnews.go.com/blogs/technology/2013/04/
google—-glass—explorer—edition-to-ship-this—-month/.

C. Thompson, M. Johnson, S. Egelman, D. Wagner, and
J. King. When it’s better to ask forgiveness than get
permission: Designing usable audit mechanisms for
mobile permissions. In Proceedings of the 2013
Symposium on Usable Privacy and Security (SOUPS),
2013.

L. von Ahn and L. Dabbish. Labeling images with a
computer game. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI *04, pages 319-326, New York, NY, USA, 2004.
ACM.

M. Weiser. The computer for the 21st century. Scientific
American, pages 94-104, 1991.


http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
http://www.xbox.com/en-US/xbox-one/innovation
http://techland.time.com/2012/05/10/pebble-smartwatch-pre-orders-sold-out/
http://techland.time.com/2012/05/10/pebble-smartwatch-pre-orders-sold-out/
http://www.franziroesner.com/pdf/arsec-cacm2014-preprint.pdf
http://www.franziroesner.com/pdf/arsec-cacm2014-preprint.pdf
http://abcnews.go.com/blogs/technology/2013/04/google-glass-explorer-edition-to-ship-this-month/
http://abcnews.go.com/blogs/technology/2013/04/google-glass-explorer-edition-to-ship-this-month/

	Introduction
	Background
	Ubiquitous Sensing
	Crowdsourcing
	Perceptual Computing

	Initial Comprehension Rates
	Open-Ended Survey
	Common Misunderstandings
	Age Detection
	Camera-Based Emotion Detection
	Voice-Based Emotion Detection
	Gender Detection
	Face Detection
	Face Recognition
	Voice Command & Control
	Language Detection
	Heart Rate Detection


	Crowdsourcing Themes
	Methodology
	Results

	Evaluation
	Discussion
	Limitations
	Conclusion and Future Work

	Acknowledgements
	REFERENCES 

